2.已知在△ABC中,a,b,c分別是∠BAC,∠ABC,∠ACB的對邊,若過點C作垂直于AB的垂線CD,且CD=h,則下列給出的關(guān)于a,b,c,h的不等式中正確的是( 。
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

分析 分類判斷,利用等邊三角形,直角三角形的知識得出,邊長,高之間的關(guān)系.

解答 解:

當△ABC為等邊三角形時,a=b=c=t,h=$\frac{\sqrt{3}}{2}$t,
則a+b=2t,$\sqrt{4{h}^{2}+{c}^{2}}$=$\sqrt{3{t}^{2}+{t}^{2}}$=2t,
此時a+b=$\sqrt{4{h}^{2}+{c}^{2}}$
當△ABC為直角三角形時,利用外接圓的知識得出:2h≤c
ab=ch,
a+b=$\sqrt{{a}^{2}+^{2}+2ab}$=$\sqrt{{c}^{2}+2ch}$≥$\sqrt{{c}^{2}+4{h}^{2}}$
故選:B

點評 本題考查了平面幾何知識的運用,三角形的邊長的關(guān)系的運用,屬于容易題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.要得到函數(shù) f(x)=sin(3x+$\frac{π}{3}$)的導函數(shù)f′(x)的圖象,只需將f(x)的圖象(  )
A.向右平移$\frac{π}{3}$個單位,再把各點的縱坐標伸長到原來的3倍( 橫坐標不變)
B.向右平移$\frac{π}{6}$個單位,再把各點的縱坐標縮短到原來的3倍( 橫坐標不變)
C.向左平移$\frac{π}{3}$個單位,再把各點的縱坐標縮短到原來的 3倍( 橫坐標不變)
D.向左平移$\frac{π}{6}$個單位,再把各點的縱坐標伸長到原來的 3倍( 橫坐標不變)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)集合A={x|-1<x<1},B={x|log2x<-1},則A∩B=(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({-1,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知三棱錐的俯視圖與側(cè)視圖如圖所示,俯視圖是邊長為4的正三角形,側(cè)視圖是有一直角邊長為4的直角三角形,則該三棱錐的正視圖可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)已知復數(shù)z滿足|z|=$\sqrt{2}$,z2的虛部為2,求復數(shù)z;
(2)求函數(shù)f(x)=ex、直線x=2及兩坐標軸圍成的圖形繞x軸旋轉(zhuǎn)一周所得幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.拋物線y2=8x的焦點坐標是(  )
A.(-2,0)B.(0,-2)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$ (α為參數(shù)),當圓心C到直線kx+y+4=0的距離最大時,k的值為(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.-$\frac{1}{3}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在數(shù)列{an}中,a1=2,an+1=3an-2n+1,n∈N*
(Ⅰ)設(shè)數(shù)列bn=an-n,證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn
(Ⅲ)當n≥2且n∈N*時,證明不等式Sn+1<3Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過點(-4,6),則下列各點中在y=$\frac{k}{x}$圖象上的是( 。
A.(3,8)B.(3,-8)C.(-8,-3)D.(-4,-6)

查看答案和解析>>

同步練習冊答案