A. | [$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$](k∈Z) | B. | ($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$)(k∈Z) | ||
C. | (kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z) | D. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) |
分析 根據(jù)正切函數(shù)的單調(diào)性進(jìn)行求解.
解答 解:函數(shù)f(x)=-tan($\frac{π}{3}$-2x)=tan(2x-$\frac{π}{3}$),
由kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,k∈Z,
解得$\frac{kπ}{2}$-$\frac{π}{12}$<x<$\frac{kπ}{2}$+$\frac{5π}{12}$,
故函數(shù)f(x)的遞增區(qū)間為
($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$),k∈Z.
故選:B.
點(diǎn)評(píng) 本題主要考查了正切函數(shù)的單調(diào)性應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $-\sqrt{3}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α⊥γ,β⊥γ,則α∥β | B. | 若l1∥α,l1⊥β,則α∥β | ||
C. | 若α∥β,l1∥α,l2∥β,則l1∥l2 | D. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 | ||
E. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 | F. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1或2 | B. | 1 | C. | 2 | D. | 1或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=|lnx| | B. | y=-lnx | C. | y=2-x | D. | y=2|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | $-\frac{π}{4}$ | $\frac{π}{12}$ | $\frac{5π}{12}$ | $\frac{3π}{4}$ | $\frac{13π}{12}$ |
ωx+ϕ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
f(x) | 2 | 6 | 2 | -2 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com