7.已知f(x)是定義在[-5,5]上的偶函數(shù),且f(3)>f(1),則正確的是( 。
A.f(0)<f(5)B.f(-1)<f(3)C.f(3)>f(2)D.f(2)>f(0)

分析 根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行判斷即可.

解答 解:∵f(x)是偶函數(shù),
∴若f(3)>f(1),
則f(3)>f(-1),題目中無其他條件,
故只有B成立,
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC的周長為$\sqrt{2}$+1,且sin A+sin B=$\sqrt{2}$sin C,BC•AC=$\frac{1}{3}$,則$\overrightarrow{BC}$•$\overrightarrow{AC}$=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|m<x<2m},B={x|y=$\sqrt{4-x}$},C={y|y=2x-$\sqrt{x-1}$}.
(1)若log3m=1,求A∪B;
(2)若A∩(B∩C)≠∅,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(2x+1)的定義域?yàn)椋?1,2),則f(1-2x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,2)B.(-1,5)C.(-2,1)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l的方程為y=$\frac{1}{2}$x+1,則l的斜率為( 。
A.$\frac{1}{2}$B.-2C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列的算法流程圖中,

其中能夠?qū)崿F(xiàn)求兩個(gè)正整數(shù)的最大公約數(shù)的算法有(  )個(gè).
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知如圖1平面α,β,γ和直線l,若α∩β=l,α⊥γ,β⊥γ,求證:l⊥γ;
(2)已知如圖2平面α和β,直線l和α,且α∩β=l,若a∥α,a∥β,求證:a∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)據(jù)x1,x2,x3,…,x100是杭州市100個(gè)普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對(duì)于x、y、z,這101個(gè)月收入數(shù)據(jù)( 。
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“cosα=0”是“sinα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案