A. | ($\frac{π}{4}$,0) | B. | ($\frac{π}{8}$,0) | C. | ($\frac{π}{2}$,0) | D. | ($\frac{5π}{24}$,0) |
分析 由倍角公式可求函數(shù)解析式,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可求y=cos4x,由4x=kπ+$\frac{π}{2}$,k∈Z,即可解得函數(shù)的對稱中心.
解答 解:∵y=2sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)=sin[2(x+$\frac{π}{6}$)]=sin(2x+$\frac{π}{3}$),
∴圖象各點的橫坐標(biāo)縮短為原來的$\frac{1}{2}$,可得函數(shù)y=sin(4x+$\frac{π}{3}$),
再向左平移$\frac{π}{24}$個單位,得到函數(shù)y=sin[4(x+$\frac{π}{24}$)+$\frac{π}{3}$]=cos4x,
∴由4x=kπ+$\frac{π}{2}$,k∈Z,解得:x=$\frac{kπ}{4}$+$\frac{π}{8}$,k∈Z,
∴當(dāng)k=0時,可得函數(shù)的圖象的對稱中心為:($\frac{π}{8}$,0).
故選:B.
點評 本題主要考查了二倍角的正弦函數(shù)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,考查了轉(zhuǎn)化思想,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_7^2A_3^2$ | B. | $C_7^2A_5^5$ | C. | $C_7^2A_5^2$ | D. | $C_7^2A_4^2$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com