A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{2}{3}$ |
分析 先利用二元一次不等式(組)與平面區(qū)域,根據(jù)約束條件畫出可行域,然后求出區(qū)域的面積即可,利用目標函數(shù)的幾何意義,利用數(shù)形結合確定a的值
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分)
可知A(0,1),B(0,-1),C(1,0),x,y滿足約束條件,
則點P(x,y)所在區(qū)域的面積就是三角形的面積:S△ABC=$\frac{1}{2}$×2×1=1.
設y=-ax,
結合圖形可知a<0時,才能滿足滿足ax+y>0的區(qū)域面積占Ω面積的$\frac{1}{3}$,
由$\left\{\begin{array}{l}{y=-ax}\\{x+y=1}\end{array}\right.$,解得xD=$\frac{1}{1-a}$,
則S△OAD=$\frac{1}{2}$×1×$\frac{1}{1-a}$=$\frac{1}{3}$,
解得a=-$\frac{1}{2}$,
故選:C.
點評 本題考查線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i | B. | -i | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {m|-2≤m≤1} | B. | {m|-$\frac{1}{2}$≤m≤1} | C. | {m|-1≤m≤$\frac{1}{2}$} | D. | {m|-$\frac{1}{2}$≤m≤$\frac{1}{4}$} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com