9.把3男2女共5名新生分配給甲、乙兩個(gè)班,每個(gè)班分配的新生不少于2名,且甲班至少分配1名女生,則不同的分配方案種數(shù)為16.

分析 根據(jù)題意,用間接法分析:先計(jì)算將5人分配到2個(gè)班級(jí)的情況數(shù)目,再分析其中甲班全部為男生的情況數(shù)目,用“將5人分配到2個(gè)班級(jí)”的情況數(shù)目減去“甲班沒(méi)有女生即全部為男生”的情況數(shù)目,即可得答案.

解答 解:根據(jù)題意,先將5人分配到2個(gè)班級(jí),
需要先把5人分成兩組,有C52=10種分組方法,再把分好的2組對(duì)應(yīng)2個(gè)班級(jí),有A22=2種情況,
則將5人分配到2個(gè)班級(jí),有10×2=20種分配方法;
其中甲班沒(méi)有女生即全部為男生的情況有2種:
甲班只有3名男生,則有C33=1種情況,
甲班只有2名男生,則有C32=3種情況,
則甲班沒(méi)有女生的即全部為男生的情況有1+3=4種,
則甲班至少分配1名女生的分配方案有20-4=16種;
故答案為:16.

點(diǎn)評(píng) 本題考查排列、組合的實(shí)際應(yīng)用,可以選用間接法,避免分類(lèi)討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在區(qū)域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.}\right\}$中,若滿足ax+y>0的區(qū)域面積占Ω面積的$\frac{1}{3}$,則實(shí)數(shù)a的值是( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$=2,且$\overrightarrow$=(1,$\sqrt{3}$),則$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow$方向上的投影為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)A(-4,0)的直線l與橢圓C相切于點(diǎn)B,與y軸交于點(diǎn)D(0,2),又橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)圓Q與直線l相切于點(diǎn)B,且經(jīng)過(guò)點(diǎn)F2,求圓Q的方程,并判斷圓Q與圓x2+y2=a2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a、b∈R,若3-4i3=$\frac{2-bi}{a+i}$,則a+b等于(  )
A.-9B.5C.13D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=3,且$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為$\frac{π}{4}$,則|$\overrightarrow$|=(  )
A.6B.3$\sqrt{2}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有五人五錢(qián),令上二人所得與下三人等.問(wèn)各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢(qián),要使甲乙兩人所得的錢(qián)與丙丁戊三人所得的錢(qián)相等,問(wèn)每人各得多少錢(qián)?”根據(jù)題意,乙得( 。
A.$\frac{2}{3}$錢(qián)B.$\frac{5}{6}$錢(qián)C.1錢(qián)D.$\frac{7}{6}$錢(qián)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在平行四邊形ABCD中,AB=4,AD=2,∠A=$\frac{π}{3}$,M為DC的中點(diǎn),N為平面ABCD內(nèi)一點(diǎn),若|$\overrightarrow{AB}$-$\overrightarrow{NB}$|=|$\overrightarrow{AM}$-$\overrightarrow{AN}$|,則$\overrightarrow{AM}$•$\overrightarrow{AN}$=( 。
A.16B.12C.8D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案