13.已知集合A={x|0<x<2},集合B={x|-1<x<1},集合C={x|mx+1>0},若A∪B⊆C,則實(shí)數(shù)m的取值范圍為( 。
A.{m|-2≤m≤1}B.{m|-$\frac{1}{2}$≤m≤1}C.{m|-1≤m≤$\frac{1}{2}$}D.{m|-$\frac{1}{2}$≤m≤$\frac{1}{4}$}

分析 求出A∪B={x|-1<x<2},利用集合C={x|mx+1>0},A∪B⊆C,分類討論,可得結(jié)論.

解答 解:由題意,A∪B={x|-1<x<2},
∵集合C={x|mx+1>0},A∪B⊆C,
①m<0,x<-$\frac{1}{m}$,∴-$\frac{1}{m}$≥2,∴m≥-$\frac{1}{2}$,∴-$\frac{1}{2}$≤m<0;
②m=0時(shí),成立;
③m>0,x>-$\frac{1}{m}$,∴-$\frac{1}{m}$≤-1,∴m≤1,∴0<m≤1,
綜上所述,-$\frac{1}{2}$≤m≤1,
故選B.

點(diǎn)評(píng) 此題考查了并集及其運(yùn)算,以及集合間的包含關(guān)系,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知單位向量$\overrightarrow a$,$\overrightarrow b$,滿足$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在幾何體A1B1C1-ABC中,∠ACB=90°,AC=BC=2,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1,且AA1=1.
(Ⅰ)求證:平面A1B1C1⊥平面A1ABB1
(Ⅱ)求平面ABC與平面A1BC1所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,則c的取值范圍為( 。
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正四面體ABCD中,O是△BCD的中心,E,F(xiàn)分別是AB,AC上的動(dòng)點(diǎn),且$\overrightarrow{BE}$=λ$\overrightarrow{BA}$,$\overrightarrow{CF}$=(1-λ)$\overrightarrow{CA}$
(1)若OE∥平面ACD,求實(shí)數(shù)λ的值;
(2)若λ=$\frac{1}{2}$,正四面體ABCD的棱長(zhǎng)為2$\sqrt{2}$,求平面DEF和平面BCD所成的角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于x的方程kx2-2lnx-k=0有兩個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍是(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在區(qū)域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.}\right\}$中,若滿足ax+y>0的區(qū)域面積占Ω面積的$\frac{1}{3}$,則實(shí)數(shù)a的值是( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在正三棱柱ABC-A1B1C1中,已知AB=AA1=3,點(diǎn)P在棱CC1上,則三棱錐P-ABA1的體積為$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案