8.在復(fù)平面內(nèi)復(fù)數(shù)z=$\frac{3+4i}{1-i}$(i為虛數(shù)單位)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)z=$\frac{3+4i}{1-i}$=$\frac{(3+4i)(1+i)}{(1-i)(1+i)}$=$\frac{-1+7i}{2}$對應(yīng)的點(diǎn)$(-\frac{1}{2},\frac{7}{2})$在第二象限.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,a2-8a5=0,則$\frac{{S}_{8}}{{S}_{4}}$的值為$\frac{17}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=$\frac{2π}{3}$,AC∩BD=O,且PO⊥平面ABCD,PO=$\sqrt{3}$,點(diǎn)F,G分別是線段PB,PD上的中點(diǎn),E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|$\frac{x-10}{x-1}$≤0},B={y|y=lgx,x∈A},則A∪B=( 。
A.{1}B.C.[0,10]D.(0,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列說法錯(cuò)誤的是:(1)、(2)、(3).
(1)已知函數(shù)y=sinωx的最小正周期為2π,則ω=1;
(2)在平面直角坐標(biāo)系xOy中,O(0,0),B(1,0),C(0,2$\sqrt{2}$),用斜二測畫法把△OBC畫在對應(yīng)的x′O′y′中時(shí),B′C′的長是1;
(3)已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=13,|b-5a|≤12,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影的取值范圍是[$\frac{5}{13}$,+∞);
(4)f(x)=ex•sinx(-$\frac{π}{4}$≤x≤$\frac{11π}{4}$)的極大值點(diǎn)為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an},a1=-ll,公差d≠0,且a2,a5,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i是虛數(shù)單位,則復(fù)數(shù)$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中的真命題為( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使得$\overrightarrow{a}$=λ$\overrightarrow$
B.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤4)=0.79,則P(ξ≤-2)=0.21
C.“φ=$\frac{3π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若平面區(qū)域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夾在兩條平行直線之間,則這兩條平行直線間的距離的最小值是(  )
A.$\frac{{3\sqrt{5}}}{5}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案