9.已知x≥-3,求證:$\sqrt{x+5}$-$\sqrt{x+3}$>$\sqrt{x+6}$-$\sqrt{x+4}$.

分析 使用分析法兩邊平方尋找使不等式成立的條件,只需條件恒成立即可

解答 證明:要證$\sqrt{x+5}$-$\sqrt{x+3}$>$\sqrt{x+6}$-$\sqrt{x+4}$
只需證$\sqrt{x+5}$+$\sqrt{x+4}$>$\sqrt{x+3}$+$\sqrt{x+6}$,
只需證$\sqrt{(x+4)(x+5)}$>$\sqrt{(x+3)(x+6)}$,
只需證(x+4)(x+5)>(x+3)(x+6),
即x2+9x+20>x2+9x+18,
即20>18
上式顯然成立,以上各步可逆,所以得證.

點評 本題考查了不等式的證明方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標系xoy中,點P到$({0,-\sqrt{3}}),({0,\sqrt{3}})$兩點的距離之和等于4,若點P的軌跡為C.
(1)求C的方程;
(2)如果經(jīng)過點(0,1)的直線l交C于點A,B,且$\overrightarrow{OA}•\overrightarrow{AB}=0$,求該直線的方程及$|{\overrightarrow{AB}}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a>0,求證:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平行六面體ABCD-A1B1C1D1中,AB=2,AD=3,AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,則對角線AC1的長為$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右頂點分別為A、B,它的右焦點是F(1,0).橢圓上一動點P(x0,y0)(不是頂點)滿足${k_{PA}}•{k_{PB}}=-\frac{1}{2}$.
(1)求橢圓的方程;
(2)設(shè)過點P且與橢圓相切的直線為m,直線m與橢圓的右準線l交于點Q,試證明∠PFQ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.圓心在x軸上,半徑長為 $\sqrt{2}$,且過點(-2,1)的圓的方程為(  )
A.(x+1)2+y2=2B.x2+(y+2)2=2
C.(x+3)2+y2=2D.(x+1)2+y2=2或(x+3)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 b=a3+$\frac{1}{1+a}$,a∈[0,1].  證明:
(1)b≥1-a+a2
(2)$\frac{3}{4}$<b≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知隨機變量X服從正態(tài)分布N(100,532),P(X<110)=0.84,則P(90<X≤100)=( 。
A.0.16B.0.34C.0.42D.0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)b,c分別是先后拋擲一枚骰子得到的點數(shù).
(1)設(shè)A={x|x2-bx+2c<0,x∈R},求A≠∅的概率;
(2)設(shè)隨機變量ξ=|b-c|,求ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案