精英家教網 > 高中數學 > 題目詳情
1.函數y=$\frac{ln|x|}{{x}^{2}}+\frac{1}{{x}^{2}}$在[-2,2]的圖象大致為(  )
A.B.
C.D.

分析 根據當x=2時,y=$\frac{1+ln2}{4}$>0,故排除A、D.當x>0時,利用導數求得函數在(0,$\sqrt{e}$)上單調遞增,在($\sqrt{e}$,+∞)上單調遞減,從而得出結論.

解答 解:對于函數y=$\frac{lnx+1}{{x}^{2}}$,故當x=2時,y=$\frac{1+ln2}{4}$>0,故排除A、D;
當x>0時,由于y′=$\frac{\frac{1}{x}{•x}^{2}-2xlnx}{{x}^{4}}$=$\frac{1-2lnx}{{x}^{3}}$,令y′=0,求得x=$\sqrt{e}$,
在(0,$\sqrt{e}$)上,y′>0,函數y單調遞增;在($\sqrt{e}$,+∞)上,y′<0,函數y單調遞減,
故排除C,
故選:B.

點評 本題主要考查函數的圖象,利用導數研究函數的單調性,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

11.已知x,y∈[0,π],則cos(x+y)+cosx+2cosy的最小值為-2.25.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.在等比數列{an}中,a1,a4是方程x2-2x-3=0的兩根,則a2•a3=( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.設f(x)=$\left\{{\begin{array}{l}{-2{e^{x-2}},x≥2}\\{{{log}_3}({{x^2}-1}),x<2}\end{array}}$,則f(f(2))的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.在矩形中ABCD中,AB=2AD,在CD上任取一點P,△ABP的最大邊是AB的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知等比數列{an}中,各項都是正數,且${a_1},\frac{1}{2}{a_3},2{a_2}$成等差數列,則$\frac{{{a_8}+{a_9}}}{{{a_7}+{a_8}}}$=( 。
A.$\sqrt{2}-1$B.$3-2\sqrt{2}$C.$3+2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=ax2+bx-lnx(a,b∈R).
(1)當a=-1,b=3時,求函數f(x)在[$\frac{1}{2}$,2]上的最大值和最小值;
(2)設a>0,且對于任意的x>0,f(x)≥f(1),試比較lna與-2b的大。

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.從4,5,6,7,8這5個數中任取兩個數,則所取兩個數之積能被3整除概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.命題:?x∈R,cos x<2的否定是?x∈R,cosx≥2.

查看答案和解析>>

同步練習冊答案