4.計(jì)算:($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+(${\frac{64}{27}$)${\;}^{-\frac{2}{3}}$-3+$\frac{37}{48}$.

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可

解答 解:原式=$(\frac{5}{3})^{2×\frac{1}{2}}$+$(\frac{4}{3})^{3×(-\frac{2}{3})}$-3+$\frac{37}{48}$=$\frac{5}{3}$+$\frac{9}{16}$-3+$\frac{37}{48}$=6.

點(diǎn)評 本題考查了指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|y=$\sqrt{\frac{1}{{x}^{2}-5x+4}}$},B={-2,-1,0,1,2},則(∁RA)∩B=( 。
A.{2}B.{1,2}C.{-2,-1}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線l交拋物線y2=2x于M(x1,y1),N(x2,y2)兩點(diǎn).
(1)若k=1,求|MN|;
(2)求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:
(1)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$
(2)log225•log34•log59.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)y=2x+1的圖象只需把函數(shù)y=2x上的所有點(diǎn)(  )
A.向下平移1個(gè)單位長度B.向上平移1個(gè)單位長度
C.向左平移1個(gè)單位長度D.向右平移1個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=0.771.2,b=1.20.77,c=π0,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<b<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M為PB中點(diǎn).
(1)證明:CM∥平面PAD;
(2)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.正六棱錐得底面周長為24,O是底面的中心,H是BC的中點(diǎn),∠SHO=60°.
(1)求棱錐的高;
(2)求棱錐的斜高;
(3)求棱錐的側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=alnx+$\frac{1}{2}{x^2}$+2bx在[1,2]上單調(diào)遞增,則a+4b的最小值是( 。
A.-3B.-4C.-5D.$-\frac{15}{4}$

查看答案和解析>>

同步練習(xí)冊答案