分析 通過討論x的范圍,求出不等式|f(x)|+|g(x)|≤2的解集即可;根據絕對值的性質求出|f(2x)|+|g(x)|的最小值即可.
解答 解:∵f(x)=x-2,g(x)=2x-5,
∴|f(x)|+|g(x)|≤2,
即|x-2|+|2x-5|≤2,
x≥$\frac{5}{2}$時,x-2+2x-5≤2,解得:$\frac{5}{2}$≤x≤3,
2<x<$\frac{5}{2}$時,x-2+5-2x≤2,解得:x≥1,
x≤2時,2-x+5-2x≤2,解得:x≥$\frac{5}{3}$,
綜上,不等式的解集是[$\frac{5}{3}$,3];
|f(2x)|+|g(x)|=|2x-2|+|2x-5|≥|2x-2-2x+5|=3,
故|f(2x)|+|g(x)|的最小值是3,
故答案為:[$\frac{5}{3}$,3],3.
點評 本題考查了解絕對值不等式問題,考查絕對值的性質,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 36π | B. | $\frac{64\sqrt{2}}{3}$π | C. | 8$\sqrt{6}$π | D. | $\frac{8}{3}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com