【題目】如圖,有一塊平行四邊形綠地ABCD,經(jīng)測(cè)量BC=2百米,CD=1百米,∠BCD=120°,擬過(guò)線段BC上一點(diǎn)E設(shè)計(jì)一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計(jì)路的寬度),將綠地分為面積之比為1:3的左右兩部分,分別種植不同的花卉,設(shè)EC=x百米,EF=y百米.
(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),試確定點(diǎn)E的位置;
(2)試求x的值,使路EF的長(zhǎng)度y最短.
【答案】
(1)解:∵
當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),由已知 ,
又∵ ,E是BC的中點(diǎn)
(2)解:①當(dāng)點(diǎn)F在CD上,即1≤x≤2時(shí),利用面積關(guān)系可得 ,
再由余弦定理可得 ;當(dāng)且僅當(dāng)x=1時(shí)取等號(hào)
②當(dāng)點(diǎn)F在DA上時(shí),即0≤x<1時(shí),利用面積關(guān)系可得DF=1﹣x,
(ⅰ)當(dāng)CE<DF時(shí),過(guò)E作EG∥CD交DA于G,在△EGF中,EG=1,GF=1﹣2x,∠EGF=60°,
利用余弦定理得
(ⅱ)同理當(dāng)CE≥DF,過(guò)E作EG∥CD交DA于G,在△EGF中,EG=1,GF=2x﹣1,∠EGF=120°,
利用余弦定理得
由(ⅰ)、(ⅱ)可得 ,0≤x<1
∴ = ,
∵0≤x<1,∴ ,當(dāng)且僅當(dāng)x= 時(shí)取等號(hào),
由①②可知當(dāng)x= 時(shí),路EF的長(zhǎng)度最短為
【解析】(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí), ,即 ,從而確定點(diǎn)E的位置;(2)分類(lèi)討論,確定y關(guān)于x的函數(shù)關(guān)系式,利用配方法求最值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的首項(xiàng),且,,.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)若,數(shù)列中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫(xiě)出這三項(xiàng),若不存在說(shuō)明理由.
(Ⅲ)若是遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過(guò)右焦點(diǎn)F2的直線l與C相交于P、Q兩點(diǎn),若△PQF1的周長(zhǎng)為短軸長(zhǎng)的2 倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若對(duì)于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿足條件的實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△中,已知,直線經(jīng)過(guò)點(diǎn).
(Ⅰ)若直線:與線段交于點(diǎn),且為△的外心,求△的外接圓的方程;
(Ⅱ)若直線方程為,且△的面積為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,則下列命題正確的是(寫(xiě)出所有正確命題的編號(hào)).
①若ab>c2 , 則C<
②若a+b>2c,則C<
③若a3+b3=c3 , 則C<
④若(a+b)c≤2ab,則C>
⑤若(a2+b2)c2≤2a2b2 , 則C> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1是橢圓5x2+9y2=45的左焦點(diǎn),P為橢圓上半部分任意一點(diǎn),A(1,1)為橢圓內(nèi)一點(diǎn),則|PA|+|PF1|的最小值_______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx(sinx+cosx).
(1)求f(x)的最小正周期和最大值;
(2)在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f()=1,a=2 , 求三角形ABC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com