14.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G為線段PC上的點.
(Ⅰ)證明:BD⊥面PAC
(Ⅱ)若G是PC的中點,求DG與APC所成的角的正弦值;
(Ⅲ)若G滿足PC⊥面BGD,求二面角G-BD-A的余弦值.

分析 (Ⅰ)設(shè)AC∩BD=O,由△ABD≌△CBD,△ABO≌△CBO,得BD⊥AC,由線面垂直得PA⊥BD,由此能證明BD⊥面PAC;
(Ⅱ)由(Ⅰ)知BD⊥平面PAC,則∠DGO為直線DG與平面PAC所成的角,求解三角形可得DG與APC所成的角的正弦值;
(Ⅲ)由BD⊥平面PAC,可得OG⊥BD,OA⊥BD,得∠AOG為二面角G-BD-A的平面角,然后利用三角形相似求解.

解答 (Ⅰ)證明:設(shè)AC∩BD=O,∵AB=BC,AD=CD,
∴△ABD≌△CBD,得∠ABD=∠CBD,則△ABO≌△CBO,
∴∠AOB=∠COB=90°,故BD⊥AC,
∵PA⊥面ABCD,∴PA⊥BD,
∵PA∩AC=A,∴BD⊥面PAC;
(Ⅱ)解:由(Ⅰ)知BD⊥平面PAC,
故∠DGO為直線DG與平面PAC所成的角,
在Rt△ABC中,由AB=2,∠ABO=60°,得AO=$\sqrt{3}$,
在Rt△ADO中,由AD=$\sqrt{7}$,AO=$\sqrt{3}$,得DO=2,
又GO=$\frac{1}{2}$PA=$\frac{\sqrt{3}}{2}$,
∴DG=$\sqrt{O{D}^{2}+O{G}^{2}}=\frac{\sqrt{19}}{2}$,則sin∠DGO=$\frac{OD}{DG}=\frac{2}{\frac{\sqrt{19}}{2}}=\frac{4\sqrt{19}}{19}$.
∴DG與平面APC所成的角的正弦值為$\frac{4\sqrt{19}}{19}$;
(Ⅲ)解:由BD⊥平面PAC,可得OG⊥BD,OA⊥BD,
∴∠AOG為二面角G-BD-A的平面角,
∵PC⊥面BGD,∴PG⊥GO,則Rt△PAC∽Rt△OGC,
∴cos∠COG=cos∠CPA=$\frac{PA}{PC}$,
∵PA=$\sqrt{3}$,AC=2AO=$2\sqrt{3}$,
∴PC=$\sqrt{P{A}^{2}+A{C}^{2}}=\sqrt{15}$,
則cos∠COG=cos∠CPA=$\frac{PA}{PC}$=$\frac{\sqrt{3}}{\sqrt{15}}=\frac{\sqrt{5}}{5}$.
則cos∠AOG=-cos∠COG=$-\frac{\sqrt{5}}{5}$.
故二面角G-BD-A的余弦值為-$\frac{\sqrt{5}}{5}$.

點評 本題考查線面垂直的判定,考查線面角及面面角的求法,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|.
(1)當a=2時,解不等式f(x)≥4-|x-1|;
(2)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0)求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)要將中國南方的新鮮荔枝運到北方甲、乙兩地銷售,運輸時間單位以天計算.從運輸出發(fā)到目的地所用時間為n天,則新鮮荔枝的品質(zhì)為n級.據(jù)統(tǒng)計,每噸n級新鮮荔枝的利潤是:運到甲地200-60n;運到乙地為300-70n.根據(jù)歷史資料,近期各有10批次運往甲、乙兩地的運輸時間及頻數(shù)統(tǒng)計如表:
目的地/頻數(shù)/運輸時間12345
甲地2431
乙地1342
以下計算都將頻率視為概率,若選擇運往甲地或乙地的概率相同(利潤單位為:元)
(1)問運往甲地或乙地的新鮮荔枝每噸利潤不低于80元的概率;
(2)設(shè)運到乙地的新鮮荔枝每噸利潤為隨機變量ξ,求ξ的分布列和數(shù)學(xué)期望Eξ;
(3)在同一批次中,把噸位數(shù)相同的新鮮荔枝運到甲地和運到乙地所獲利潤分別為X、Y,求事件“X>Y”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$f(x)=sin(ωx+\frac{π}{3})$(ω>0)的圖象中,最小正周期為π,若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)g(x),則g(x)的解析式為( 。
A.$g(x)=sin(4x+\frac{π}{6})$B.$g(x)=sin(4x-\frac{π}{3})$C.$g(x)=sin(2x+\frac{π}{6})$D.g(x)=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列關(guān)于命題的敘述,錯誤的個數(shù)為( 。
①p∨q為真命題,則p∧q為真命題
②“x>1”是“l(fā)og${\;}_{\frac{1}{2}}$(x+2)<0”的必要不充分條件
③若“?x∈[0,$\frac{π}{4}$],tanx≤m”是真命題,則實數(shù)m的最小值為1
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.等差數(shù)列 {an}中,已知a2=3,a7=13
(1)求數(shù)列 {an}的通項公式;
(2)求數(shù)列 {an}前10項的和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點P1的球坐標是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),點P2的柱坐標是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),則|P1P2|=3-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某種產(chǎn)品的廣告支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x24568
y3040605070
根據(jù)上表可得回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat$為6.5.若要使銷售額不低于100萬元,則至少需要投入廣告費為(x為整數(shù))( 。
A.10萬元B.11萬元C.12萬元D.13萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={1,2},N={1,2,3},則滿足A∪X=N的集合X的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案