9.公差不為零的等差數(shù)列{an}的前n項和為Sn.若a4是a3與a7的等比中項,S8=16,則S10等于(  )
A.18B.24C.30D.60

分析 設(shè)等差數(shù)列{an}的公差為d≠0.根據(jù)a4是a3與a7的等比中項,可得$({a}_{1}+3d)^{2}$=(a1+2d)(a1+6d),化為:2a1+3d=0.由S8=16,可得8a1+$\frac{8×7}{2}$×d=16,聯(lián)立解得a1,d.利用等差數(shù)列的求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d≠0.∵a4是a3與a7的等比中項,∴$({a}_{1}+3d)^{2}$=(a1+2d)(a1+6d),
化為:2a1+3d=0.
∵S8=16,∴8a1+$\frac{8×7}{2}$×d=16,
聯(lián)立解得a1=-$\frac{3}{2}$,d=1.
則S10=$10×(-\frac{3}{2})$+$\frac{10×9}{2}×1$=30.
故選:C.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點,P,Q分別是AD和CD的中點,且直線AQ與BP的交點在橢圓E:$\frac{x^2}{a^2}$+y2=1(a>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點,T為橢圓E的上頂點,M為橢圓E第一象限部分上一點,求梯形ORMT面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在矩形ABCD中,AB=8,AD=3,點E、F分別為AB、CD的中點,將四邊形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如圖2所示,點G,H分別在A1B,D1C上,A1G=D1H=$\sqrt{3}$,過點G,H的平面α與幾何體A1EB-D1FC的面相交,交線圍成一個正方形.
(1)在圖中畫出這個正方形(不必說明畫法和理由);
(2)求直線EH與平面α所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=lnx+$\frac{1}{x}-\frac{1}{2}$,g(x)=ex-$\frac{1}{2}{x^2}-ax-\frac{1}{2}{a^2}$(e是自然對數(shù)的底數(shù),a∈R).
(Ⅰ)求證:|f(x)|≥-(x-1)2+$\frac{1}{2}$;
(Ⅱ)已知[x]表示不超過x的最大整數(shù),如[1.9]=1,[-2.1]=-3,若對任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a,\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,則向量$\overrightarrow a+\overrightarrow b$在向量$\overrightarrow a$方向上的投影是( 。
A.0B.$\frac{2}{3}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線$\frac{x^2}{3}-\frac{y^2}{6}=1$的漸近線方程是y=±$\sqrt{2}$x,離心率是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的上下頂點分別為A,B,且點B(0,-1).F1,F(xiàn)2分別為橢圓W的左、右焦點,且∠F1BF2=120°.
(Ⅰ)求橢圓W的標(biāo)準(zhǔn)方程;
(Ⅱ)點M是橢圓上異于A,B的任意一點,過點M作MN⊥y軸于N,E為線段MN的中點.直線AE與直線y=-1交于點C,G為線段BC的中點,O為坐標(biāo)原點.求∠OEG的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)從甲、乙兩個品牌共9個不同的空氣凈化器中選出3個分別測試A、B、C三項指標(biāo),若取出的3個空氣凈化器中既有甲品牌又有乙品牌的概率為$\frac{5}{6}$,那么9個空氣凈化器中甲、乙品牌個數(shù)分布可能是( 。
A.甲品牌1個,乙品牌8個B.甲品牌2個,乙品牌7個
C.甲品牌3個,乙品牌6個D.甲品牌4個,乙品牌5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點P(-1,2),圓心在直線x-y+2=0上,且與直線2x+y=0相切的圓的方程為(x-1)2+(y-3)2=5.

查看答案和解析>>

同步練習(xí)冊答案