8.若函數(shù)y=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0),兩相鄰點(diǎn)最高點(diǎn)與最低點(diǎn)的距離為$\sqrt{\frac{{π}^{2}}{4}+16}$,兩相鄰最高點(diǎn)的橫坐標(biāo)相差π,求這個(gè)函數(shù)的振幅、周期、對(duì)稱軸、對(duì)稱中心及單調(diào)增區(qū)間.

分析 根據(jù)兩相鄰點(diǎn)最高點(diǎn)與最低點(diǎn)的距離為$\sqrt{\frac{{π}^{2}}{4}+16}$,可得橫坐標(biāo)之間的長(zhǎng)度為$\frac{1}{2}$T,縱坐標(biāo)的距離為2A.
兩相鄰最高點(diǎn)的橫坐標(biāo)相差π,可得周期T為π.求出A和ω,可得f(x)解析式.即可求出振幅、周期、對(duì)稱軸、對(duì)稱中心及單調(diào)增區(qū)間.

解答 解:函數(shù)y=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0),兩相鄰點(diǎn)最高點(diǎn)與最低點(diǎn)的距離為$\sqrt{\frac{{π}^{2}}{4}+16}$,
可得橫坐標(biāo)之間的長(zhǎng)度為$\frac{1}{2}$T,縱坐標(biāo)的距離為2A.
根據(jù)勾股定理可得:$\frac{{π}^{2}}{4}+16=\frac{{T}^{2}}{4}+4{A}^{2}$…①.
兩相鄰最高點(diǎn)的橫坐標(biāo)相差π,可得周期T=π=$\frac{2π}{ω}$…②,帶入①式可得:A=2.
由②可得:ω=2.
∴f(x)=2sin(2x$+\frac{π}{6}$).
故得振幅為2、周期T為π、
對(duì)稱軸方程為2x+$\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z,
∴對(duì)稱軸x=$\frac{π}{6}+\frac{1}{2}kπ$、k∈Z,
由對(duì)稱中心橫坐標(biāo)2x+$\frac{π}{6}$=kπ,k∈Z,
∴對(duì)稱中心坐標(biāo)為($\frac{1}{2}kπ-\frac{π}{12}$,0)
由$-\frac{π}{2}+2kπ≤$2x+$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z,
可得:$kπ-\frac{π}{3}$≤x≤$\frac{π}{6}+kπ$
∴單調(diào)增區(qū)間為[$kπ-\frac{π}{3}$,$\frac{π}{6}+kπ$],k∈Z,

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線C1
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為$(\sqrt{3},0)$,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在凸四邊形ABCD中,BD=2,且$\overrightarrow{AC}•\overrightarrow{BD}=0$,$(\overrightarrow{AB}+\overrightarrow{DC})•(\overrightarrow{BC}+\overrightarrow{AD})=5$,則四邊形ABCD的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,則實(shí)數(shù)k的最大值為( 。
A.40B.9C.8D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若數(shù)列{an}為等差數(shù)列,S99=198,則a48+a49+a50+a51+a52=(  )
A.7B.8C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等比數(shù)列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),則m=( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F1,離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)F1且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若y2=4x上存在兩點(diǎn)M,N,橢圓C上存在兩個(gè)點(diǎn)P,Q,滿足:P,Q,F(xiàn)1三點(diǎn)共線,M,N,F(xiàn)1三點(diǎn)共線且PQ⊥MN,求四邊形PMQN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$.設(shè)過點(diǎn)F2的直線l被橢圓C截得的線段為RS,當(dāng)l⊥x軸時(shí),|RS|=3
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)T(4,0),證明:當(dāng)直線l變化時(shí),直線TS與TR的斜率之和為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案