A. | [$\frac{π}{6}$,$\frac{π}{3}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$] | C. | [$\frac{π}{4}$,$\frac{3π}{4}$] | D. | [$\frac{3π}{4}$,π] |
分析 將函數(shù)f(x)=sinx•cosx=$\frac{1}{2}$sin2x結(jié)合正弦函數(shù)性質(zhì)求解單調(diào)遞減區(qū)間,即可得在[0,π]上的單調(diào)遞減區(qū)間.
解答 解:函數(shù)f(x)=sinx•cosx=$\frac{1}{2}$sin2x,
令$\frac{π}{2}+2kπ≤2x≤\frac{3π}{2}+2kπ$,k∈Z.
得:$\frac{π}{4}+kπ≤x≤\frac{3π}{4}+kπ$.
當(dāng)k=0時,可得函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{4}$,$\frac{3π}{4}$].
故選:C.
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)是最小正周期為π的奇函數(shù) | B. | 函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{12}$對稱 | ||
C. | 函數(shù)f(x)在區(qū)間$[{\frac{π}{6},\frac{5π}{12}}]$上是增函數(shù) | D. | 函數(shù)f(x)的圖象關(guān)于點$({-\frac{π}{12},0})$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相外切 | B. | 相內(nèi)切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$ | B. | -2$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$ | C. | $\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$ | D. | 3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=$\frac{1}{2}$,b=1 | B. | a=$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=-$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com