分析 運(yùn)用偶函數(shù)的定義,可得f(-x)=f(x),得x<0時(shí),f(x)=-xln(-x)+x,求出導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點(diǎn),運(yùn)用點(diǎn)斜式方程,即可得到所求方程.
解答 解:函數(shù)f(x)為偶函數(shù),可得f(-x)=f(x),
即有x<0時(shí),-x>0,
當(dāng)x>0時(shí),f(x)=xlnx-x,
可得f(-x)=-xln(-x)+x=f(x),
則x<0時(shí),f(x)=-xln(-x)+x,
導(dǎo)數(shù)為f′(x)=-ln(-x)-1+1=-ln(-x),
可得曲線y=f(x)在點(diǎn)(-e,f(-e))處的切線斜率為k=-lne=-1,
切點(diǎn)為(-e,0),
則曲線y=f(x)在點(diǎn)(-e,f(-e))處的切線方程為y-0=-(x+e),
即為x+y+e=0.
故答案為:x+y+e=0.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查函數(shù)的奇偶性的運(yùn)用:求解析式,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2b2≤$\frac{1}{16}$ | B. | a2+b2≥$\frac{1}{2}$ | C. | (1+$\frac{1}{a}$)(1+$\frac{1}$)≥9 | D. | $\frac{1}{a}$+$\frac{1}$≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow a∥\overrightarrow b$ | B. | $\overrightarrow a⊥\overrightarrow b$ | C. | $\overrightarrow a$與$\overrightarrow b$的夾角為60° | D. | $\overrightarrow a$與$\overrightarrow b$的夾角為30° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com