2.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)若PB=PC=$\sqrt{2}$,問在側棱PB上是否存在一點M,使得二面角M-AD-B的余弦值為$\frac{{5\sqrt{3}}}{9}$?若存在,求出$\frac{PM}{PB}$的值;若不存在,說明理由.

分析 (1)取AB的中點E,連結CE,推導出四邊形AECD是正方形,從而CE⊥AB,再求出AC⊥CB,由此能證明AC⊥PB.
(2)設BC的中點為F,連結PF,分別以FE、FB、FP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出結果.

解答 證明:(1)取AB的中點E,連結CE,
∵AB∥CD,DC=$\frac{1}{2}$AB,∴DC$\underset{∥}{=}$AE,
∴四邊形AECD是平行四邊形,
又∵∠ADC=90°,∴四邊形AECD是正方形,∴CE⊥AB,
∴△CAB是等腰三角開有,且CA=CB=2,AB=2$\sqrt{2}$,
∴AC2+CB2=AB2,∴AC⊥CB,
又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,
∴AC⊥平面PBC,
又PB?平面PBC,∴AC⊥PB.
解:(2)設BC的中點為F,連結PF,
∵PB=PC,∴PF=BC,
∴PF⊥平面ABCD,∴PF⊥AC,
連結EF,則EF∥AC,∴PF⊥FE,EF⊥BC,
分別以FE、FB、FP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,
∵AD=PB=PC=$\sqrt{2}$,則F(0,0,0),A(2,-1,0),
B(0,1,0),D(1,-2,0),P(0,0,1),
∴$\overrightarrow{PB}$=(0,1,-1),$\overrightarrow{AD}$=(-1,-1,0),$\overrightarrow{FP}$=(0,0,1),
若在線段PB上存在一點M,設$\overrightarrow{PM}$=$λ\overrightarrow{PB}$,(0≤λ<1),
∵$\overrightarrow{PM}=\overrightarrow{FM}-\overrightarrow{FP}$,∴$\overrightarrow{FM}=λ\overrightarrow{PB}+\overrightarrow{FP}$=λ(0,1,-1)+(0,0,1)=(0,λ,1-λ),
∴M(0,λ,1-λ),$\overrightarrow{MD}=(1,-2-λ,-1+λ)$,
設平面MAD的一個法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=x+y=0}\\{\overrightarrow{m}•\overrightarrow{MD}=x-(2+λ)y-(1-λ)z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-1,$\frac{3+λ}{1-λ}$),
平面ABCD的法向量$\overrightarrow{n}$=(0,0,1),
∵二面角M-AD-B的余弦值為$\frac{{5\sqrt{3}}}{9}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|\frac{3+λ}{1-λ}|}{\sqrt{1+1+(\frac{3+λ}{1-λ})^{2}}}$=$\frac{5\sqrt{3}}{9}$,
解得$λ=\frac{1}{3}$或λ=2(舍).
∴存在點M,使得二面角M-AD-B的余弦值為$\frac{5\sqrt{3}}{9}$,且$\frac{PM}{PB}$=$\frac{1}{3}$.

點評 本題考查異面直線垂直的證明,考查滿足條件的點的位置的確定,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R).
(Ⅰ)若f(x)在區(qū)間(-1,1)內(nèi)為減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)對于實數(shù)a的不同取值,試討論y=f(x)在(-1,1)內(nèi)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.原始社會時期,人們通過在繩子上打結來計算數(shù)量,即“結繩計數(shù)”,當時有位父親,為了準確記錄孩子的成長天數(shù),在粗細不同的繩子上打結,由細到粗,滿七進一,如圖所示,孩子已經(jīng)出生468天.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,$\frac{2a+b}{cosB}$=$\frac{-c}{cosC}$.
(1)求角C的大。
(2)求sinAsinB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x+$\frac{1}{x-a}$+$\frac{1}{x-b}$(a,b為實常數(shù)).
(Ⅰ)若a+b=0,判斷函數(shù)f(x)的奇偶性,并加以證明;
(Ⅱ)記M=$\left\{\begin{array}{l}{a,b<a}\\{b,b≥a}\end{array}\right.$,A=$\frac{a+b}{2}$,求實數(shù)λ的取值范圍,使得方程f(x)=$\frac{λ}{x-A}$+A在區(qū)間(M,+∞)上無解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,斜三棱柱ABC-A1B1C1的側面AA1C1C是菱形,側面ABB1A1⊥側面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為$\sqrt{3}$,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1
(Ⅱ)求三棱錐A1-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設an=3n,求證:$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:填空題

函數(shù)的定義域是 .

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:填空題

若向量,,則函數(shù)在區(qū)間上的零點個數(shù)為

查看答案和解析>>

同步練習冊答案