5.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t為參數(shù)).在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0.
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求|OA|•|OB|.

分析 (Ⅰ)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t為參數(shù)).消去參數(shù)t可得直線l的普通方程.曲線C的極坐標(biāo)方程為ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0,利用互化公式可得:曲線C的直角坐標(biāo)方程.
(Ⅱ)直線l的極坐標(biāo)方程是$θ=\frac{π}{3}$,代入曲線C的極坐標(biāo)方程得:ρ2-5ρ+4=0,可得|OA|•|OB|=|ρAρB|.

解答 解:(Ⅰ)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t為參數(shù)).
消去參數(shù)t可得直線l的普通方程是$y-\sqrt{3}=\sqrt{3}(x-1)$,即$y=\sqrt{3}x$.
曲線C的極坐標(biāo)方程為ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0,
利用互化公式可得:曲線C的直角坐標(biāo)方程是${x^2}+{y^2}-4x-2\sqrt{3}y+4=0$,即${(x-2)^2}+{(y-\sqrt{3})^2}=3$.
(Ⅱ)直線l的極坐標(biāo)方程是$θ=\frac{π}{3}$,代入曲線C的極坐標(biāo)方程得:ρ2-5ρ+4=0,
所以|OA|•|OB|=|ρAρB|=4.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若P為可行域$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$內(nèi)的一點(diǎn),過P的直線l與圓O:x2+y2=7交于A,B兩點(diǎn),則|AB|的最小值為(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)O為原點(diǎn),極軸為x軸的非負(fù)半軸建立直角坐標(biāo)系,直線l的
參數(shù)方程為$\left\{\begin{array}{l}x=1+at\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)直線l與曲線C交于B,D兩點(diǎn),當(dāng)|BD|取到最小值時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}4x-{x^2},x≥0\\ \frac{3}{x},x<0\end{array}$,若函數(shù)g(x)=|f(x)|-3x+b有三個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為$(-∞,-6)∪(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線DE切圓O于點(diǎn)D,直線EO交圓O于A,B兩點(diǎn),DC⊥OB于點(diǎn)C,且DE=2BE,求證:2OC=3BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競(jìng)爭(zhēng)力得到大幅提升.伴隨著國內(nèi)市場(chǎng)增速放緩,國內(nèi)有實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場(chǎng),在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
愿意被外派不愿意被外派合計(jì)
70后202040
80后402060
合計(jì)6040100
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有90%以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排4名參與調(diào)查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,現(xiàn)采用隨機(jī)抽樣方法從報(bào)名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|y=ln(x-1)},B={x|-1<x<2},則(∁RA)∩B=( 。
A.(-1,1)B.(-1,2)C.(-1,1]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,則$\overrightarrow{DE}$=( 。
A.$\frac{3}{4}b-\frac{1}{3}a$B.$\frac{5}{12}a-\frac{3}{4}b$C.$\frac{3}{4}a-\frac{1}{3}b$D.$\frac{5}{12}b-\frac{3}{4}a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班級(jí)為了進(jìn)行戶外拓展游戲,組成紅、藍(lán)、黃3個(gè)小隊(duì).甲、乙兩位同學(xué)各自等可能地選擇其中一個(gè)小隊(duì),則他們選到同一小隊(duì)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案