4.若x,y滿足$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$則y-x的最大值為( 。
A.0B.3C.4D.5

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$對應(yīng)的平面區(qū)域,
由z=y-x,得y=x+z,
平移直線y=x+z,由圖象可知當直線y=x+z經(jīng)過點A時,直線y=x+z的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y=3}\end{array}\right.$,
解得A(0,3),
此時z的最大值為:3-0=3.
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標函數(shù)的最大值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.$\frac{1}{2}c{m^3}$B.1cm3C.$\frac{3}{2}c{m^3}$D.3cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}\right.$,若對任意的x∈R,不等式f(x)≤$\frac{5}{4}$m-m2恒成立,則實數(shù)m的取值范圍為( 。
A.[-1,$\frac{1}{4}$]B.[$\frac{1}{4}$,1]C.[-2,$\frac{1}{4}$]D.[$\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某程序如圖所示,該程序運行后輸出的最后一個數(shù)是( 。
A.$\frac{17}{16}$B.$\frac{9}{8}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.給出下列等式:
$\sqrt{2}$=2cos$\frac{π}{4}$,
$\sqrt{2+\sqrt{2}}$=2cos$\frac{π}{8}$,
$\sqrt{2+\sqrt{2+\sqrt{2}}}$=2cos$\frac{π}{16}$

請從中歸納出第n(n∈N*)個等式:$\sqrt{2+…+\sqrt{2+\sqrt{2}}}$=2cos$\frac{π}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線x+y=0與圓x2+(y-a)2=1相切,則a的值為(  )
A.1B.±1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在二項式${(2x-\frac{1}{x})^6}$的展開式中,常數(shù)項是(  )
A.-240B.240C.-160D.160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在Rt△ABC中,AB=AC=1,若一個橢圓經(jīng)過A、B兩點,它的一個焦點為點C,另一個焦點在邊AB上,則這個橢圓的離心率為( 。
A.$\frac{{2\sqrt{3}-\sqrt{6}}}{2}$B.$\sqrt{2}-1$C.$\frac{{\sqrt{6}-\sqrt{3}}}{2}$D.$\sqrt{6}-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)=lg\frac{ax+1}{1-2x}$是奇函數(shù),則實數(shù)a=2.

查看答案和解析>>

同步練習冊答案