13.在Rt△ABC中,AB=AC=1,若一個橢圓經(jīng)過A、B兩點(diǎn),它的一個焦點(diǎn)為點(diǎn)C,另一個焦點(diǎn)在邊AB上,則這個橢圓的離心率為(  )
A.$\frac{{2\sqrt{3}-\sqrt{6}}}{2}$B.$\sqrt{2}-1$C.$\frac{{\sqrt{6}-\sqrt{3}}}{2}$D.$\sqrt{6}-\sqrt{3}$

分析 設(shè)另一焦點(diǎn)為D,則可再Rt△ABC中,根據(jù)勾股定理求得BC,進(jìn)而根據(jù)橢圓的定義知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根據(jù)勾股定理求得CD,得到橢圓半焦距,進(jìn)一步求得離心率.

解答 解:設(shè)另一焦點(diǎn)為D,
∵Rt△ABC中,AB=AC=1,
∴BC=$\sqrt{2}$,
∵AC+AD=2a,
∴AC+AB+BC=1+1+$\sqrt{2}$=4a,
∴a=$\frac{2+\sqrt{2}}{4}$,
又∵AC=1,∴AD=$\frac{\sqrt{2}}{2}$.
在Rt△ACD中焦距CD=$\sqrt{A{C}^{2}+A{D}^{2}}=\frac{\sqrt{6}}{2}$,
則c=$\frac{\sqrt{6}}{4}$,
∴$e=\frac{c}{a}=\frac{\frac{\sqrt{6}}{4}}{\frac{2+\sqrt{2}}{4}}=\frac{\sqrt{6}}{2+\sqrt{2}}=\sqrt{6}-\sqrt{3}$.
故選:D.

點(diǎn)評 本題主要考查了橢圓的簡單性質(zhì)和解三角形的應(yīng)用.要理解好橢圓的定義和橢圓中短軸,長軸和焦距的關(guān)系是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{1+x}{1-x}$的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若x,y滿足$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$則y-x的最大值為( 。
A.0B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上任意一點(diǎn)P,作與y軸平行的直線,交兩漸近線于A,B兩點(diǎn),若$\overrightarrow{PA}•\overrightarrow{PB}=-\frac{a^2}{4}$,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{10}}}{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$滿足$f(x+\frac{π}{2})=-f(x)$,若其圖象向左平移$\frac{π}{6}$個單位后得到的函數(shù)為奇函數(shù).
(1)求f(x)的解析式;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c-a)cosB=bcosA,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA丄平面ABCD,AB丄BC,∠BCA=45°,PA=AD=2,AC=1,DC=$\sqrt{5}$
(Ⅰ) 證明PC丄AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.射線OA繞端點(diǎn)O逆時針旋轉(zhuǎn)120°到達(dá)OB的位置,再順時針旋轉(zhuǎn)270°到達(dá)OC的位置,則∠AOC=( 。
A.150°B.-150°C.390°D.-390°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x∈R,則“x>-1”是“x3>-1”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow a=({1,1})$,向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,$\overrightarrow a•\overrightarrow b=\sqrt{2}$,則$|{\overrightarrow b}|$等于2.

查看答案和解析>>

同步練習(xí)冊答案