4.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow c$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),$(\overrightarrow c-2\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,則|$\overrightarrow c$|的最大值為(  )
A.0B.$\sqrt{3}$C.$\frac{\sqrt{7}+\sqrt{3}}{2}$D.$\sqrt{7}$

分析 設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,由|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),可得$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow$=0,解得θ=$\frac{π}{3}$.不妨設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=$(\frac{1}{2},\frac{\sqrt{3}}{2})$.$\overrightarrow{c}$=(x,y).由$(\overrightarrow c-2\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,可得:$(x-\frac{5}{4})^{2}$+$(y-\frac{\sqrt{3}}{4})^{2}$=$\frac{3}{4}$.可得|$\overrightarrow c$|=$\sqrt{{x}^{2}+{y}^{2}}$的最大值.

解答 解:設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,∵|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),∴$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow$=1-2cosθ=0,
解得θ=$\frac{π}{3}$.
不妨設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=$(\frac{1}{2},\frac{\sqrt{3}}{2})$.$\overrightarrow{c}$=(x,y).
∵$(\overrightarrow c-2\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,∴(x-$\frac{1}{2}$)(x-2)+$y(y-\frac{\sqrt{3}}{2})$=0,
化為$(x-\frac{5}{4})^{2}$+$(y-\frac{\sqrt{3}}{4})^{2}$=$\frac{3}{4}$.
則|$\overrightarrow c$|=$\sqrt{{x}^{2}+{y}^{2}}$≤$\sqrt{(\frac{5}{4})^{2}+(\frac{\sqrt{3}}{4})^{2}}$+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{7}+\sqrt{3}}{2}$.
故選:C.

點(diǎn)評 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上且滿足PC=3PM,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,已知點(diǎn)P(-3,-1),OA為第一象限的角平分線,將OA沿逆時(shí)針旋轉(zhuǎn)θ角到OB,若$\overrightarrow{OP}•\overrightarrow{OB}=0$,則tanθ的值為(  )
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)定義在 R 上的函數(shù)y=f(x),對于任一給定的正數(shù)p,定義函數(shù)fp(x)=$\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,則稱函數(shù) f p (x) 為 f (x) 的“p 界函數(shù)”.關(guān)于函數(shù)f(x)=x2-2x-1的 2 界函數(shù),結(jié)論不成立的是( 。
A.f2(f(0))=f(f2(0))??B.f2(f(1))=f(f2(1))??C.f2(f(2))=f(f2(2))??D.f2(f(3))=f(f2(3))??

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓C上,滿足$\overrightarrow{P{F_1}}•\overrightarrow{{F_1}{F_2}}=0,|{\overrightarrow{P{F_1}}}|=\frac{{\sqrt{5}}}{5},|{\overrightarrow{P{F_2}}}|=\frac{{9\sqrt{5}}}{5}$.
(1)求橢圓C的方程.
(2)設(shè)過點(diǎn)D(0,2)的直線l與橢圓C相交于不同的兩點(diǎn)M、N,且N在D、M之間,設(shè)$\overrightarrow{DN}=λ\overrightarrow{DM}$,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對于任意正整數(shù)n均成立,則數(shù)列{xn}的前2016項(xiàng)和S2016的值為(  )
A.672B.673C.1342D.1344

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-5≤0}\\{y≥\frac{1}{12}{x}^{4}+\frac{1}{4}}\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2+2x-3<0},B={x|0<x<3},則A∩B=( 。
A.(0,1)B.(0,3)C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+2=2an,等差數(shù)列{bn}的前n項(xiàng)和為Tn,且T2=S2=b3
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令${c_n}={(-1)^n}\frac{{4{T_n}-1}}{b_n^2-1}$,求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

同步練習(xí)冊答案