【題目】已知拋物線焦點為,且,,過作斜率為的直線交拋物線于、兩點.
(1)若,,求;
(2)若為坐標(biāo)原點,為定值,當(dāng)變化時,始終有,求定值的大。
(3)若,,,當(dāng)改變時,求三角形的面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將6個數(shù)2、0、1、9、20、19按任意次序排成一行,拼成一個8位數(shù)(首位不為0),則產(chǎn)生的不同的8位數(shù)的個數(shù)為______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列滿足: , .為數(shù)列的前項和.
(Ⅰ)求證:對任意正整數(shù),有;
(Ⅱ)設(shè)數(shù)列的前項和為,求證:對任意,總存在正整數(shù),使得時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,則其體積為_________,若該圓柱的三視圖如圖所示,圓柱表面上的點M在正視圖上的對應(yīng)點為A,圓柱表面上的點N在側(cè)視圖上的對應(yīng)點為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長度為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓右焦點與拋物線的焦點重合,以原點為圓心、橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程
(2)若直線與y軸交點為P,A、B是橢圓上兩個動點,它們在y軸兩側(cè),,的平分線與y軸重合,則直線AB是否過定點,若過定點,求這個定點坐標(biāo),若不過定點說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , , ,直線與平面成角, 為的中點, , .
(Ⅰ)若,求證:平面平面;
(Ⅱ)若,求直線與平面所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展“新型冠狀病毒防疫安全公益課”在線學(xué)習(xí),在此之后組織了“新型冠狀病毒防疫安全知識競賽”在線活動.已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進(jìn)行預(yù)測,若預(yù)測完全正確將會獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求該業(yè)主獲得禮品的概率;
(2)求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1,E,F分別是棱CC1,AB的中點.
(1)證明:CF∥平面AEB1.
(2)若AC=BC=AA1=4,∠ACB=90°,求三棱錐B1﹣ECF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,對恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,設(shè).若正實數(shù),滿足,,,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com