16.設Sn為等差數(shù)列{an}的前n項和,且a3=5,S6=42,則S9=117.

分析 利用等差數(shù)列的通項公式與求和公式即可得出.

解答 解:設等差數(shù)列{an}的公差為d,∵a3=5,S6=42,
∴a1+2d=5,6a1+$\frac{6×5}{2}$d=42,
聯(lián)立解得a1=-3,d=4.
則S9=-3×9+$\frac{9×8}{2}×4$=117.
故答案為:117.

點評 本題考查了等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=2x+1-2x2的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.宋元時期數(shù)學名著《算學啟蒙》中有關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.圖1是源于其思想的一個程序框圖,若輸入的a,b分別為4,2,則輸出的n等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設全集U={x|ex>1},函數(shù)f(x)=$\frac{1}{{\sqrt{x-1}}}$的定義域為A,則∁UA為(  )
A.(0,1]B.(0,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復數(shù)z=$\frac{a+i}{2i}$(其中i為虛數(shù)單位)的虛部與實部相等,則實數(shù)a的值為( 。
A.1B.$\frac{1}{2}$C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|x2-2x<0},B={x|y=log2(x-1)},則A∪B=( 。
A.(0,+∞)B.(1,2)C.(2,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)+ax2,a>0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(-1,0)有唯一零點x0,證明:${e^{-2}}<{x_0}+1<{e^{-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某路公交車在6:30,7:00,7:30準時發(fā)車,小明同學在6:50至7:30之間到達該站乘車,且到達該站的時刻是隨機的,則他等車時間不超過10分鐘的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函數(shù)f(x)有最大值M,則M的取值范圍是(  )
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

查看答案和解析>>

同步練習冊答案