A. | 30° | B. | 60° | C. | 90° | D. | 120° |
分析 由a:b:c的比值,設(shè)一份為k,表示出a,b及c,利用余弦定理表示出cosC,將表示出的a,b及c代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù),為此三角形中最大角的度數(shù),可得結(jié)論.
解答 解:∵a:b:c=3:5:7,即a=3k,b=5k,c=7k,
∴由余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{9{k}^{2}+25{k}^{2}-49{k}^{2}}{30{k}^{2}}$=-$\frac{1}{2}$,
又C為三角形的內(nèi)角,
則此三角形中最大角C的度數(shù)是120°,
∴這個三角形最大角的外角是60°.
故選:B.
點評 此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
觀察下列各式:則( )
A.28 B.76 C.123 D.199
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{2}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{3\sqrt{3}}{4}$π | D. | $\frac{\sqrt{3}}{8}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50π | B. | 50$\sqrt{2}$π | C. | 40π | D. | 40$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com