8.如圖所示,三棱錐P-ABC的底面在平面α內(nèi),且AC⊥PC,平面PAC⊥平面PBC,點P,A,B是定點,則動點C的軌跡是( 。
A.一條線段B.一條直線
C.一個圓D.一個圓,但要去掉兩個點

分析 利用面面垂直的性質(zhì)及線面垂直的判斷和性質(zhì)得到AC⊥BC,可得點C在以AB為直徑的圓上得答案

解答 解:∵平面PAC⊥平面PBC,
而平面PAC∩平面PBC=PC,
又AC?面PAC,且AC⊥PC,∴AC⊥面PBC,
而BC?面PBC,∴AC⊥BC,
∴點C在以AB為直徑的圓上,
∴點C的軌跡是一個圓,但是要去掉A和B兩點.
故選:D.

點評 本題考查空間動點軌跡方程,關(guān)鍵是把空間問題轉(zhuǎn)化為平面問題,考查了空間想象能力和思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sina}\end{array}\right.$(a為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半周為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=3$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線x-2y+2=0與圓C:x2+y2-4y+m=0相交,截得的弦長為$\frac{{2\sqrt{5}}}{5}$.
(1)求圓C的方程;
(2)已知P(2,4),過P向圓C引兩條切線分別與拋物線y=x2交與點Q、R(異于R點),判斷直線QR與圓C的位置關(guān)系,并加以說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=asinx-bcosx(其中a,b為正實數(shù))的圖象關(guān)于直線$x=-\frac{π}{6}$對稱,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.$a=\sqrt{3}$,b=1
B.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象的一個對稱中心為$({\frac{2}{3}π,0})$
D.不等式f(x1)f(x2)≤4取到等號時|x2-x1|的最小值為2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且若?a、b∈[-1,1],a+b≠0,恒有$\frac{f(a)+f(b)}{a+b}$>0,
(1)證明:函數(shù)f(x)在[-1,1]上是增函數(shù);
(2)若?x∈[-1,1],對?a∈[-1,1],不等式f(x)≥m2-2am-2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求過直線x-2y+3=0和2x+y-4=0的交點,斜率為1 的直線方程;
(2)過點A(-1,2)的直線l的傾斜角β是直線l1:2x-y+1=0的傾斜角α的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B,C是單位圓上互不相同的三點,且滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$$•\overrightarrow{AC}$的最小值為( 。
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)Xi(i=1,2,…,50)是相互獨立的隨機變量,且都服從泊松分布P(0.03),令Z=$\sum_{i=1}^{50}$Xi,試用中心極限定理計算P{Z≥3}.(附$\sqrt{1.5}$≈1.2247,Φ(1.225)=0.8907)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知一空間幾何體的三視圖如圖所示,則該幾何體的外接球的體積為$\frac{64\sqrt{2}π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案