8.已知f(x)=x4,g(x)=($\frac{1}{3}$)x-λ,若對任意的x1∈[-1,2],存在x2∈[-1,2],使f(x1)≥g(x2)成立,則實數(shù)λ的取值范圍是( 。
A.λ≥$\frac{1}{9}$B.λ≥2C.λ≥-$\frac{8}{9}$D.λ≥-13

分析 條件對任意x1∈[-1,2],總存在x2∈[-1,2],使f(x1)≥g(x2)成立等價為上f(x)min≥g(x)min即可.

解答 解:∵x1∈[-1,2],∴0≤f(x1)≤16,
∵x2∈[-1,2],∴$\frac{1}{9}$-λ≤g(x2)≤3-λ,
若對任意x1∈[-1,2],總存在x2∈[-1,2],使f(x1)≥g(x2)成立,
則f(x)min≥g(x)min即可,
即0≥$\frac{1}{9}$-λ,
解得λ≥$\frac{1}{9}$,
故選:A.

點評 本題主要考查函數(shù)值的大小比較以及不等式恒成立問題,將條件轉(zhuǎn)化為求函數(shù)最值之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知球的直徑為4,則該球的表面積積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在如圖所示的幾何體中,A1B1C1-ABC是直三棱柱,四邊形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中點.
(Ⅰ)求證:AE∥平面BB1D;
(Ⅱ)當(dāng)AE與平面ABCD所成角的正切值為$\frac{1}{2}$時,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知冪函數(shù)f(x)=xα,其中$α∈\{-2,-1,\frac{1}{2},1,2,3\}$,則使f(x)為奇函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的α的所有值為1,3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f(x+6)(x<9)}\end{array}\right.$,則f(5)的值為( 。
A.2B.8C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)對任意x∈R都有f(x+4)+f(x)+f(4)=0,函數(shù)f(x+3)的圖象關(guān)于點(-3,0)對稱,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知方程x2+y2+2x-2y+1=0.
(1)求x2+y2的最大值.
(2)求$\frac{y-2}{x-1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的各項均為不等的正整數(shù),其前n項和為Sn,我們成滿足條件“對任意的m,n∈N*,均有(n-m)Sm+n=(m+n)(Sn-Sm)”的數(shù)列{an}為“好”數(shù)列.
(1)試判斷數(shù)列{an},{bn}是否為“好”數(shù)列,其中${a_n}=2n-1,{b_n}={2^{n-1}},n∈{N^*}$,并給出證明.
(2)已知數(shù)列{cn}為“好”數(shù)列.
①c2016=2017,求數(shù)列的通項公式;
②若c1=p,且對任意的給定正整數(shù)p,s(s>1),有c1,cs,ct成等比數(shù)列,求證:t≥s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在三角形ABC中,點E,F(xiàn)滿足$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{CF}=2\overrightarrow{FA}$,若$\overrightarrow{EF}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$-\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊答案