分析 (1)利用三角恒等變換化簡函數(shù)f(x),再計算f(0)的值,
(2)利用正弦函數(shù)的圖象與性質求f(x)的單調增區(qū)間.
解答 解:函數(shù)f(x)=sin(2x+$\frac{π}{2}$)-4cos(π-x)sin(x-$\frac{π}{6}$)
=cos2x+4cosx(sinxcos$\frac{π}{6}$-cosxsin$\frac{π}{6}$)
=cos2x+2$\sqrt{3}$sinxcosx-2cos2x
=cos2x+$\sqrt{3}$sin2x-(1+cos2x)
=$\sqrt{3}$sin2x-1;
(1)f(0)=$\sqrt{3}$sin0-1=-1;
(2)令-$\frac{π}{2}$+2kπ≤2x≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{4}$+kπ≤x≤$\frac{π}{4}$+kπ,k∈Z;
∴函數(shù)f(x)的單調遞增區(qū)間是[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],(k∈Z).
點評 本題考查了三角恒等變換以及正弦函數(shù)的圖象與性質的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com