已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.

(Ⅰ)當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0;(Ⅱ)16.

解析試題分析:(Ⅰ)要求動(dòng)點(diǎn)P的軌跡C,設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)題意列出關(guān)系式-|x|=1,化簡得y2=2x+2|x|,式中有絕對值,需要根據(jù)x討論為當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0;(Ⅱ)由題意知,直線l1的斜率存在且不為0,可以設(shè)為k,則l1的方程為y=k(x-1),聯(lián)立得k2x2-(2k2+4)x+k2=0,接著設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)實(shí)根,于是x1+x2=2+,x1x2=1.而l1⊥l2,則l2的斜率為-,設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1,利用坐標(biāo)表示出,化簡得=8+4(k2)≥8+4×2=16,故當(dāng)且僅當(dāng)k2,即k=±1時(shí),取最小值16.
試題解析:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),由題意有
-|x|=1,
化簡,得y2=2x+2|x|.
當(dāng)x≥0時(shí),y2=4x;當(dāng)x<0時(shí),y=0.
∴動(dòng)點(diǎn)P的軌跡C的方程為y2=4x(x≥0)和y=0(x<0).
(Ⅱ)由題意知,直線l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1).
得k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)實(shí)根,于是
x1+x2=2+,x1x2=1.
∵l1⊥l2,∴l(xiāng)2的斜率為-
設(shè)D(x3,y3),E(x4,y4),則同理可得x3+x4=2+4k2,x3x4=1.
=()·()=····
=||||+||||
=(x1+1)(x2+1)+(x3+1)(x4+1)
=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1
=1+(2+)+1+1+(2+4k2)+1
=8+4(k2)≥8+4×2=16.
當(dāng)且僅當(dāng)k2,即k=±1時(shí),取最小值16.
考點(diǎn):1.曲線的軌跡方程求解;2.直線與圓錐曲線問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點(diǎn)在橢圓上,在直線上,且
(1)當(dāng)邊通過坐標(biāo)原點(diǎn)時(shí),求的長及的面積;
(2)當(dāng),且斜邊的長最大時(shí),求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點(diǎn)F(2,0)和定直線,動(dòng)圓P過定點(diǎn)F與定直線相切,記動(dòng)圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓拋物線的焦點(diǎn)均在軸上,的中心和 的頂點(diǎn)均為坐標(biāo)原點(diǎn)從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:











(Ⅰ)求分別適合的方程的點(diǎn)的坐標(biāo);
(Ⅱ)求的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在周長為定值的DDEC中,已知,動(dòng)點(diǎn)C的運(yùn)動(dòng)軌跡為曲線G,且當(dāng)動(dòng)點(diǎn)C運(yùn)動(dòng)時(shí),有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點(diǎn),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且過點(diǎn),平行于的直線在y軸的截距為,且交橢圓與兩點(diǎn),

(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個(gè)等腰三角形,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個(gè)定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫出的方程;
(2) ,求的值.

查看答案和解析>>

同步練習(xí)冊答案