分析 根據(jù)數(shù)列的遞推關系推出新數(shù)列是等差數(shù)列,然后求解數(shù)列的通項公式即可.
解答 解:∵2an+1an=an+1-an,
∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}=2$,
∵a1=2,
∴$\frac{1}{{a}_{1}}$=$\frac{1}{2}$,∴$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項為$\frac{1}{2}$,公差為:-2,∴$\frac{1}{{a}_{n}}=\frac{1}{2}+(n-1)(-2)$=$\frac{-4n+5}{2}$,
∴an=$\frac{2}{5-4n}$,
故答案為:$\frac{2}{5-4n}$.
點評 本題主要考查數(shù)列通項公式的求解,根據(jù)遞推關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 300 | B. | 250 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{61}}{6}$π | B. | $\frac{\sqrt{61}}{24}$π | C. | $\frac{61\sqrt{61}}{2}$π | D. | $\frac{61\sqrt{61}}{6}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(8+2\sqrt{5})π$ | B. | $\frac{10π}{3}$ | C. | $(10+2\sqrt{5})π$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com