分析 (1)由${S}_{n}={2}^{n}-1(n∈{N}^{+})$,可得:n=1,a1=S1=1;n≥2時(shí),an=Sn-Sn-1,即可得出.
(2)bn=log4an+1=$\frac{n+1}{2}$,利用等差數(shù)列的求和公式即可得出.
解答 解:(1)∵${S}_{n}={2}^{n}-1(n∈{N}^{+})$,n=1,a1=S1=1;n≥2時(shí),an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1.n=1時(shí)也成立.
∴an=2n-1.
(2)bn=log4an+1=$\frac{n-1}{2}$+1=$\frac{n+1}{2}$,
∴{bn}的前n項(xiàng)和為Tn=$\frac{n(1+\frac{n+1}{2})}{2}$=$\frac{{n}^{2}+3n}{4}$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系、對數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②③ | B. | ①③④ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,0) | C. | (1,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com