1.已知$\frac{a+i}{i}$=1+bi,其中a,b是實數(shù),i是虛數(shù)單位,則a+b=(  )
A.0B.1C.2D.-1

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)相等的充要條件即可求出a,b的值,則答案可求.

解答 解:∵$\frac{a+i}{i}$=1+bi,
∴a+i=i-b,
∴a=-b,
∴a+b=0,
故選:A

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的充要條件,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.從集合{2,3,4,5}中隨機抽取一個數(shù)a,從集合{4,6,8}中隨機抽取一個數(shù)b,則向量$\overrightarrow{m}$=(a,b)與向量$\overrightarrow{n}$=(-2,1)垂直的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在四邊形ABCD中,AB=2.若$\overrightarrow{DA}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$,則$\overrightarrow{AB}•\overrightarrow{DC}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sin2xcos$\frac{π}{5}-cos2xsin\frac{π}{5}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和對稱軸的方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\left\{\begin{array}{l}\;{2^x},x≤0\\ \;{log_2}x,x\;>\;0.\end{array}$則$f(\frac{1}{4})$=-2;方程f(-x)=$\frac{1}{2}$的解是-$\sqrt{2}$或1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.全世界人們越來越關(guān)注環(huán)境保護問題,某監(jiān)測站點于2016年8月某日起連續(xù)n天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
空氣質(zhì)量指數(shù)(μg/m3)區(qū)間[0,50)[50,100)[100,150)[150,200)[200,250)
空間質(zhì)量等級空氣優(yōu)空氣良輕度污染中度污染重度污染
天數(shù)2040m105
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出n,m的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于[50,100)和[150,200)的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取5天,再從中任意選取2天,求事件A”兩天空氣都為良“發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{3x+2y-6≤0}\end{array}\right.$,若?x、y使得2x-y<m,則實數(shù)m的取值范圍是m>-$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.由于渤海海域水污染嚴重,為了獲得第一手的水文資料,潛水員需要潛入水深為60米的水底進行作業(yè),根據(jù)經(jīng)驗,潛水員下潛的平均速度為v(米/單位時間),每單位時間消耗氧氣${(\frac{v}{10})^3}+1$(升),在水底作業(yè)10個單位時間,每單位時間消耗氧氣0.9(升),返回水面的平均速度為$\frac{v}{2}$(米/單位時間),每單位時間消耗氧氣1.5(升),記該潛水員完成此次任務(wù)的消耗氧氣總量為y(升).
(1)求y關(guān)于v的函數(shù)關(guān)系式;
(2)若c≤v≤15(c>0),求當下潛速度v取什么值時,消耗氧氣的總量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若復(fù)數(shù)z滿足z•(1+i)2=|1+i|2,則z=-i.

查看答案和解析>>

同步練習冊答案