8.將函數(shù)y=sin2x的圖象平移向量$\overrightarrow{a}$=($\frac{π}{6}$,1),得到圖象F′,則F′的函數(shù)表達(dá)式為y=sin(2x-$\frac{π}{3}$)+1.

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:將函數(shù)y=sin2x按向量$\overrightarrow{a}$=($\frac{π}{6}$,1)平移后得到函數(shù)的解析式
y=sin2(x-$\frac{π}{6}$)+1,即y=sin(2x-$\frac{π}{3}$)+1.
故答案為:y=sin(2x-$\frac{π}{3}$)+1.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.把2名新生分到甲、乙、丙、丁四個(gè)班,甲班必須且只能分配1名新生,則不同的分配方法有( 。
A.3種B.4種C.6種D.8種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.近期中央電視臺(tái)播出的《中國(guó)詩(shī)詞大會(huì)》火遍全國(guó),下面是組委會(huì)在選拔賽時(shí)隨機(jī)抽取的100名選手的成績(jī),按成績(jī)分組,得到的頻率分布表如下表示.
組號(hào)分組頻數(shù)頻率
第1組[160,165) 0.100
第2組[165,170) 
第3組[170,175)20
第4組[175,180)200.200
第5組[180,185)100.100
合計(jì) 1001.00
(1)請(qǐng)先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再完成頻率分布直方圖(用陰影表示);
(2)為了能選拔出最優(yōu)秀的選手,組委會(huì)決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取5名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名選手進(jìn)入第二輪面試;
(3)在(2)的前提下,組委會(huì)決定在5名選手中隨機(jī)抽取2名選手接受A考官進(jìn)行面試,求:第4組至少有一名選手被考官A面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列各式的值:
(1)$\frac{1}{2}$log24+lg20+lg5.
(2)($\frac{4}{9}$)${\;}^{-\frac{1}{2}}$+(lg3)0-($\frac{27}{8}$)${\;}^{\frac{2}{3}}$+eln2(其中e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點(diǎn).點(diǎn)P在以A為圓心,AD為半徑的圓弧$\widehat{DE}$上運(yùn)動(dòng)(如圖所示),若 $\overrightarrow{AP}$=λ $\overrightarrow{ED}$+μ $\overrightarrow{AF}$,其中λ,μ∈R.則$\frac{2λ}{μ}$的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知tanα=-$\frac{3}{4}$,且α∈(0,π),則cosα=( 。
A.$\frac{4}{5}$B.$\frac{1}{2}$C.-$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,∠A=60°,AC=3,面積為$\frac{{3\sqrt{3}}}{2}$,那么BC的長(zhǎng)度為(  )
A.$\sqrt{7}$B.3C.2$\sqrt{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號(hào)分為40組,分別為1~5,6~10,…,196~200,第5組抽取號(hào)碼為23,第9組抽取號(hào)碼為43;若采用分層抽樣,40-50歲年齡段應(yīng)抽取12人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知a、b、c分別是△ABC的內(nèi)角A、B、C對(duì)的邊,$b=\sqrt{3}$.
(1)若$C=\frac{5π}{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求c;
(2)若$B=\frac{π}{3}$,求2a-c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案