9.設數(shù)列{an}的前n項和為Sn,a1=1,an+1=λSn+1(n∈N*,λ≠-1),且a1、2a2、a3+3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=n•an,求數(shù)列{bn}的前n項和Tn

分析 (Ⅰ)運用數(shù)列的遞推式,將n換為n-1,相減可得數(shù)列{an}是以1為首項,公比為λ+1的等比數(shù)列,再由等差數(shù)列中項的性質(zhì),解方程可得公比為2,進而得到所求通項公式;
(Ⅱ)求得${b_n}=n{a_n}=n•{2^{n-1}}$,運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.

解答 解:(Ⅰ)∵an+1=λSn+1(n∈N*),∴an=λSn-1+1(n≥2),
∴an+1-an=λan,即an+1=(λ+1)an(n≥2),λ+1≠0,
又a1=1,a2=λS1+1=λ+1,
∴數(shù)列{an}是以1為首項,公比為λ+1的等比數(shù)列,
∴${a_3}={(λ+1)^2}$,
由a1、2a2、a3+3成等差數(shù)列
∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1,
∴${a_n}={2^{n-1}}$,n∈N*;
(Ⅱ)${b_n}=n{a_n}=n•{2^{n-1}}$,
∴${T_n}=1•1+2•{2^1}+3•{2^2}+…+n•{2^{n-1}}$,①
∴$2{T_n}=1•{2^1}+2•{2^2}+…+(n-1)•{2^{n-1}}+n•{2^n}$,②
①-②得$-{T_n}=1+2+{2^2}+…+{2^{n-1}}-n•{2^n}$=$\frac{{1•(1-{2^n})}}{1-2}-n•{2^n}$,
整理得${T_n}=(n-1)•{2^n}+1$.

點評 本題考查等比數(shù)列的通項公式和求和公式的運用,等差數(shù)列的中項的性質(zhì),數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,角A、B、C的對邊為a,b,c滿足c=2acosBcosC+2bcosCcosA,且△ABC的面積為3$\sqrt{3}$,c=$\sqrt{13}$,則a+b=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x+1|,g(x)=|x-1|+a.
(1)當a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)$f(x)=2sin(2x+ϕ)(|ϕ|<\frac{π}{2})$的圖象向左平移$\frac{π}{6}$個單位長度后對應的函數(shù)是奇函數(shù),函數(shù)$g(x)=(2+\sqrt{3})cos2x$.若關(guān)于x的方程f(x)+g(x)=-2在[0,π)內(nèi)有兩個不同的解α,β,則cos(α-β)的值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.拋物線y=$\frac{1}{8}$x2的焦點到準線的距離為( 。
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,點P是平行四邊形ABCD所在平面外一點,△PBC是等邊三角形,點A在平面PBC的正投影E恰好是PB中點.
(Ⅰ)求證:PD∥平面ACE
(Ⅱ)若AB⊥PA,BC=2,求點P到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=5$,$|\overrightarrow a-\overrightarrow b|=3$,則$\overrightarrow a•\overrightarrow b$=(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1的圖象與x軸相切.
(Ⅰ)求證:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt$,求證:(b-1)logbx>$\frac{{{x^2}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在數(shù)列{an}中,a1=1,an+1=2an,${S_n}=a_1^2-a_2^2+a_3^2-a_4^2+$…$+a_{2n-1}^2-a_{2n}^2$等于( 。
A.$\frac{1}{3}({2^n}-1)$B.$\frac{1}{5}(1-{2^{4n}})$C.$\frac{1}{3}({4^n}-1)$D.$\frac{1}{3}(1-{2^n})$

查看答案和解析>>

同步練習冊答案