A. | 2023×2017 | B. | 2023×2016 | C. | 1008×2023 | D. | 2017×1008 |
分析 觀察梯形數(shù)的前幾項,歸納得an=2+3+…+(n+2),結(jié)合等差數(shù)列前n項和公式得an=$\frac{1}{2}$(n+1)(n+4),由此可得a2017-5得到本題答案.
解答 解:觀察梯形數(shù)的前幾項,得
5=2+3=a1
9=2+3+4=a2
14=2+3+4+5=a3
…
an=2+3+…+(n+2)=$\frac{(n+1)(2+n+2)}{2}$=$\frac{1}{2}$(n+1)(n+4)
由此可得a2017=2+3+4+5+…+2019=$\frac{1}{2}$×2018×2021
∴a2017-5=$\frac{1}{2}$×2018×2021-5=2023×1008
故選:C
點評 本題給出“梯形數(shù)”模型,求該數(shù)列的第2017項.著重考查了歸納推理的一般方法和等差數(shù)列的前n項和等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | eπ | B. | -eπ | C. | -e${\;}^{\frac{π}{2}}$ | D. | 以上均不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\frac{π}{4}})$ | B. | $({\frac{1}{2},\frac{π}{4}})$ | C. | $(\sqrt{2},\frac{π}{4})$ | D. | $({2,\frac{π}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對一切n∈N*,(n+1)2>2n | |
B. | 由f(x)=xcosx滿足f(-x)=-f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù) | |
C. | 由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab | |
D. | 由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:數(shù)列{an}的前n項和Sn=n2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -495 | B. | -220 | C. | 495 | D. | 220 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{13}$ | D. | $\sqrt{19}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com