已知拋物線C:,點A、B在拋物線C上.
(1)若直線AB過點M(2p,0),且=4p,求過A,B,O(O為坐標原點)三點的圓的方程;
(2)設直線OA、OB的傾斜角分別為,且,問直線AB是否會過某一定點?若是,求出這一定點的坐標,若不是,請說明理由.
(1);(2)過定點
解析試題分析:(1)當直線斜率不存在時方程為,與的交點分別為M,N,弦長。此時中,,邊的中線長為,所以是直角三角形,過三點的圓的圓心為邊的中點,半徑為,則可得此圓的標準方程。(2)設點,為了省去對斜率存在與否的討論可設直線AB的方程為:。將直線與拋物線方程聯(lián)立,消去整理為關(guān)于的一元二次方程,可得根與系數(shù)的關(guān)系。根據(jù)用正切的兩角和公式展開可得關(guān)于兩點坐標間的關(guān)系。根據(jù)兩關(guān)系式可得與間的關(guān)系,故此可判斷直線是否過定點。
試題解析:(1)直線與拋物線的兩個交點坐標分別是:M,N,弦長,故三角形ABO是,所以過A,B,O三點的圓方程是:
(2)解:設點,直線AB的方程為:,它與拋物線相交,由方程組消去x可得,故,,
這樣,tan
即1=,所以,所以直線AB的方程可以寫成為:,即,所以直線AB過定點.
考點:1圓的標準方程;2拋物線與直線的位置關(guān)系問題;3直線過定點問題。
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,離心率為的橢圓上的點到其左焦點的距離的最大值為3,過橢圓內(nèi)一點的兩條直線分別與橢圓交于點、和、,且滿足,其中為常數(shù),過點作的平行線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若點,求直線的方程,并證明點平分線段.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點M
(1)求點M到拋物線C1的準線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個頂點和兩個焦點構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右頂點分別為,離心率.
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖已知拋物線:過點,直線交于,兩點,過點且平行于軸的直線分別與直線和軸相交于點,.
(1)求的值;
(2)是否存在定點,當直線過點時,△與△的面積相等?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線,直線過拋物線的焦點,交軸于點.
(1)求證:;
(2)過作拋物線的切線,切點為(異于原點),
(i)是否恒成等差數(shù)列,請說明理由;
(ii)重心的軌跡是什么圖形,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓:,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
(。┊旤c為“準圓”與軸正半軸的交點時,求直線的方程,
并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com