分析 (1)根據(jù)對數(shù)函數(shù)的真數(shù)要大于0列不等式組求解定義域.
(2)利用定義判斷函數(shù)的奇偶性.
(3)f(x)>0,即loga(1+2x)-loga(1-2x)>0,對底數(shù)a討論,求解x的取值范圍.
解答 解:(1)函數(shù)f(x)=loga(1+2x)-(loga(1-2x)(a>0,a≠1).
其定義域滿足$\left\{\begin{array}{l}{1+2x>0}\\{1-2x>0}\end{array}\right.$,解得:$-\frac{1}{2}<x<\frac{1}{2}$
故得f(x)的定義域為{x|$-\frac{1}{2}<x<\frac{1}{2}$}
(2)由(1)可知f(x)的定義域為{x|$-\frac{1}{2}<x<\frac{1}{2}$},關(guān)于原點對稱.
又∵f(-x)=loga(1-2x)-(loga(1+2x)=-f(x)
∴f(x)為奇函數(shù).
(3)f(x)>0,即loga(1+2x)-loga(1-2x)>0,⇒loga(1+2x)>loga(1-2x)
當a>1時,原不等式等價為:1+2x>1-2x,解得:x>0.
當0<a<1時,原不等式等價為:1+2x<1-2x,解得:x<0.
又∵f(x)的定義域為($-\frac{1}{2}$,$\frac{1}{2}$).
所以使f(x)>0的x的取值范圍,當a>1時為(0,$\frac{1}{2}$);當0<a<1時為($-\frac{1}{2}$,0);
點評 本題考查了對數(shù)函數(shù)的定義域的求法和奇偶性的運用,比較基礎(chǔ).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com