7.已知正數(shù)x,y滿足x+2y-2xy=0,那么2x+y的最小值是$\frac{9}{2}$.

分析 根據(jù)題意,將x+2y-2xy=0變形可得$\frac{1}{2y}$+$\frac{1}{x}$=1,進(jìn)而有2x+y=(2x+y)($\frac{1}{2y}$+$\frac{1}{x}$)=$\frac{5}{2}$+$\frac{x}{y}$+$\frac{y}{x}$,結(jié)合基本不等式分析可得答案.

解答 解:根據(jù)題意,若x+2y-2xy=0,則有$\frac{1}{2y}$+$\frac{1}{x}$=1,
則2x+y=(2x+y)($\frac{1}{2y}$+$\frac{1}{x}$)=$\frac{5}{2}$+$\frac{x}{y}$+$\frac{y}{x}$≥$\frac{5}{2}$+2$\sqrt{\frac{y}{x}•\frac{x}{y}}$=$\frac{9}{2}$,
即2x+y的最小值是$\frac{9}{2}$,當(dāng)且僅當(dāng)x=y=$\frac{3}{2}$時(shí)取等號(hào);
故答案為:$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,關(guān)鍵是求出$\frac{1}{2y}$+$\frac{1}{x}$=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn),|F1F2|=2$\sqrt{3}$,M是橢圓上一點(diǎn),∠F1MF2的最大值為$\frac{2}{3}$π
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于P,Q兩點(diǎn),且OP⊥OQ
(i)求證:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$為定值;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={1,3},$B=\{x|0<lg(x+1)<\frac{1}{2},x∈Z\}$,則A∪B=( 。
A.{1,3}B.{1,2,3}C.{1,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“a<-1”是“直線ax+y-3=0的傾斜角大于$\frac{π}{4}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中.已知直線l的普通方程為x-y-2=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設(shè)直線l與曲線C交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng)
(2)已知點(diǎn)P在曲線C上運(yùn)動(dòng).當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo)及△PAB的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知集合$A=\left\{{x\left|{\frac{x-2}{x+1}≥0}\right.}\right\}$,集合B={y|0≤y<4},則A∩B=[2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,球O的球心O在空間直角坐標(biāo)系O-xyz的原點(diǎn),半徑為1,且球O分別與x,y,z軸的正半軸交于A,B,C三點(diǎn).已知球面上一點(diǎn)$D({0,-\frac{{\sqrt{3}}}{2},\frac{1}{2}})$.
(1)求D,C兩點(diǎn)在球O上的球面距離;
(2)求直線CD與平面ABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.給出關(guān)于雙曲線的三個(gè)命題:
①雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1的漸近線方程是y=±$\frac{2}{3}$x;
②若點(diǎn)(2,3)在焦距為4的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上,則此雙曲線的離心率e=2;
③若點(diǎn)F,B分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn)和虛軸的一個(gè)端點(diǎn),則線段FB的中點(diǎn)一定不在此雙曲線的漸近線上.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=aln(x+1),g(x)=\frac{1}{3}{x^3}-ax$,h(x)=ex-1.
(Ⅰ)當(dāng)x≥0時(shí),f(x)≤h(x)恒成立,求a的取值范圍;
(Ⅱ)當(dāng)x<0時(shí),研究函數(shù)F(x)=h(x)-g(x)的零點(diǎn)個(gè)數(shù);
(Ⅲ)求證:$\frac{1095}{1000}<\root{10}{e}<\frac{3000}{2699}$(參考數(shù)據(jù):ln1.1≈0.0953).

查看答案和解析>>

同步練習(xí)冊(cè)答案