12.已知集合$A=\left\{{x\left|{\frac{x-2}{x+1}≥0}\right.}\right\}$,集合B={y|0≤y<4},則A∩B=[2,4).

分析 先求出集合A,由此利用交集的定義能求出A∩B.

解答 解:由$\frac{x-2}{x+1}$≥0,解得x≥2或x<-1,即A=(-∞,-1)∪[2,+∞),
集合B={y|0≤y<4}=[0,4),
則A∩B=[2,4),
故答案為:[2,4),

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一條對稱軸方程為$x=\frac{π}{6}$,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( 。
A.$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,(k∈Z)B.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]$,(k∈Z)
C.$[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,(k∈Z)D.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2t}\\{y=-\sqrt{3}+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρsin2θ-3cosθ=0.
(Ⅰ)求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某商場擬對商品進(jìn)行促銷,現(xiàn)有兩種方案供選擇.每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨(dú)立.根據(jù)以往促銷的統(tǒng)計數(shù)據(jù),若實施方案1,頂計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4.第二個月銷量是笫一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預(yù)計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令ξi(i=1,2)表示實施方案i的第二個月的銷量是促銷前銷量的倍數(shù).
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管實施哪種方案,ξi與第二個月的利潤之間的關(guān)系如表,試比較哪種方案第二個月的利潤更大.
銷量倍數(shù)ξi≤1.71.7<ξi<2.3ξi2.3
利潤(萬元)152025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+2y-2xy=0,那么2x+y的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若復(fù)數(shù)$\overline{z}$滿足|z+i|+|z-i|=2,則復(fù)數(shù)$\overline{z}$在平面上對應(yīng)的圖形是(  )
A.橢圓B.雙曲線C.直線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z滿足z(2+i)=3+2i,則|z|=(  )
A.$\sqrt{3}$B.$\sqrt{13}$C.$\frac{\sqrt{65}}{5}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a=log23,b=log3$\frac{1}{2}$,c=3-2,則下列結(jié)論正確的是(  )
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$與g(x)=sin(2x+θ)對稱軸完全相同,將f(x)圖象向右平移$\frac{π}{3}$個單位得到h(x),則h(x)的解析式是h(x)=-cos2x.

查看答案和解析>>

同步練習(xí)冊答案