(本小題滿分12分) 已知函數(shù)處有極值.
(Ⅰ)求實數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問是否存在實數(shù),使得不等式對任意 及
恒成立?若存在,求出的取值范圍;若不存在,請說明理由.

(Ⅰ)(Ⅱ)的單調(diào)減區(qū)間為,的單調(diào)減區(qū)間為(Ⅲ)存在,使得不等式對任意 及
恒成立

解析試題分析:解:解:(Ⅰ)因為,
所以.                                         ……2分
,可得
經(jīng)檢驗時,函數(shù)處取得極值,
所以.                                                     ………4分
(Ⅱ),
.                              ……6分
而函數(shù)的定義域為,
變化時,,的變化情況如下表:


  


  
 -
   0
 +
  
 ↘
 極小值
 ↗
由表可知,的單調(diào)減區(qū)間為,的單調(diào)減區(qū)間為.……9分
(3)∵時, …10分
不等式對任意 及恒成立,即
,
恒成立,                     

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)解關于x的不等式f(x)<0;
(2)當=-2時,不等式f(x)>ax-5在上恒成立,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)有兩個零點,求的取值范圍;
(2)若函數(shù)在區(qū)間上各有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某種產(chǎn)品投放市場以來,通過市場調(diào)查,銷量t(單位:噸)與利潤Q(單位:萬元)的變化關系如右表,現(xiàn)給出三種函數(shù),,請你根據(jù)表中的數(shù)據(jù),選取一個恰當?shù)暮瘮?shù),使它能合理描述產(chǎn)品利潤Q與銷量t的變化,求所選取的函數(shù)的解析式,并求利潤最大時的銷量.

銷量t
1
4
6
利潤Q
2
5
4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的單調(diào)增函數(shù),滿足;
(1)求;
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù)(其中,
(1)求函數(shù)的定義域;
(2)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù),
(Ⅰ) 若a =1,求函數(shù)的圖像在點處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)如果當時,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案