分析 由已知利用正弦定理可求sinC的值,結(jié)合C的范圍,分類討論,利用三角形內(nèi)角和定理可求A的值,進(jìn)而利用三角形面積公式即可計算得解.
解答 (本題滿分為13分)
解:∵$\frac{sinC}{sinB}=\frac{c}$,$sinC=\frac{{\sqrt{3}}}{2}$,…(3分)
∵c>b,
∴C=60°或C=120°,…(6分)
(Ⅰ)C=60°時,A=180°-300-600=900,
∴${S_{△ABC}}=\frac{1}{2}bc=\frac{1}{2}×1×\sqrt{3}=\frac{{\sqrt{3}}}{2}$.…(9分)
(Ⅱ)C=120°時,A=180°-300-1200=300,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×1×\sqrt{3}×\frac{1}{2}=\frac{{\sqrt{3}}}{4}$,
∴所求的C=60°,${S_{△ABC}}=\frac{{\sqrt{3}}}{2}$或C=120°,${S_{△ABC}}=\frac{{\sqrt{3}}}{4}$.…(13分)
點(diǎn)評 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角形面積公式在解三角形中的應(yīng)用,考查了分類討論思想和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{2}$ | $\frac{3π}{2}$ | $\frac{5π}{2}$ | $\frac{7π}{2}$ | $\frac{9π}{2}$ |
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 150° | B. | 30°或150° | C. | 60° | D. | 60°或120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)段 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] | 總計 |
頻數(shù) | c | b | ||||
頻率 | a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com