A. | (-∞,1] | B. | (-∞,1) | C. | [1,+∞) | D. | (1,+∞) |
分析 f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增,求導(dǎo),分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可.
解答 解:∵f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增,
∴f′(x)=ex[(1-a)sinx+(1+a)cosx]≥0在($\frac{π}{4}$,$\frac{π}{2}$)上恒成立,
∵ex>0在($\frac{π}{4}$,$\frac{π}{2}$)上恒成立,
∴(1-a)sinx+(1+a)cosx≥0在($\frac{π}{4}$,$\frac{π}{2}$)上恒成立,
∴a(sinx-cosx)≤sinx+cosx在($\frac{π}{4}$,$\frac{π}{2}$)上恒成立
∴a≤$\frac{sinx+cosx}{sinx-cosx}$,
設(shè)g(x)=$\frac{sinx+cosx}{sinx-cosx}$,
∴g′(x)=$\frac{-2}{(sinx-cosx)^{2}}$<0在($\frac{π}{4}$,$\frac{π}{2}$)上恒成立,
∴g(x)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞減,
∴g(x)>g($\frac{π}{2}$)=1,
∴a≤1,
故選:A.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性和最值得關(guān)系,關(guān)鍵是分離參數(shù),構(gòu)造函數(shù),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | -5 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0≤x<2} | B. | {x|0<x<2} | C. | {x|x<0} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{6}$錢 | B. | 1錢 | C. | $\frac{7}{6}$錢 | D. | $\frac{4}{3}$錢 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+3)2+(y-1)2=1 | B. | (x-3)2+(y+1)2=1 | C. | (x+3)2+(y+1)2=1 | D. | (x-3)2+(y-1)2=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com