10.已知函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相鄰兩對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A、B、C的對邊,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面積.

分析 (Ⅰ)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運算法則列出f(x)解析式,找出ω的值,代入周期公式即可求出函數(shù)f(x)的最小正周期,利用正弦函數(shù)的單調(diào)性即可確定出f(x)單調(diào)遞增區(qū)間;
(Ⅱ)由f(A)=1及第一問的解析式確定出A的度數(shù),再由a,b+c的值,利用余弦定理求出bc的值,利用三角形面積公式即可求出三角形ABC面積.

解答 解:(Ⅰ)依題意,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,
得f(x)=cos2ωx+$\sqrt{3}$sin2ωx=2($\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$cos2ωx)=2sin(2ωx+$\frac{π}{6}$),
ω>0,若f(x)相鄰兩對稱軸間的距離為$\frac{π}{2}$.
T=π,∴ω=1,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
則f(x)的遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z;
(Ⅱ)由f(A)=2sin(2A+$\frac{π}{6}$)=1,
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,
∴0<2A<2π,即$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,即A=$\frac{π}{3}$,
∵a=$\sqrt{3}$,b+c=3,
∴根據(jù)余弦定理得,3=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=9-3bc,
∴bc=2,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

點評 此題考查了余弦定理的應(yīng)用,平面向量的數(shù)量積運算,正弦函數(shù)的單調(diào)性,三角函數(shù)的周期性及其求法,以及三角形面積公式,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的“特征三角形”.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.若橢圓C1:$\frac{{x}^{2}}{4}$+y2=1,直線L:y=mx+n
(1)已知橢圓D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)與橢圓C1是相似橢圓,求b的值及橢圓D與橢圓C1的相似比;
(2)求點P(0,1)到橢圓C1上點的最大距離
(3)如圖2,設(shè)直線L與橢圓E:$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{{λ}^{2}}$=1(λ>1)相交于A、B兩點,與橢圓C1交于C、D兩點,求證:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x(x-a)(x-b).
(1)若a=0,b=3,求y=f(x)的切線中與y軸垂直的切線方程.
(2)若a=0,b=3,函數(shù)f(x)在(t,t+3)上既能取到極大值,又能取到極小值,求t的取值范圍;
(3)當(dāng)a=0時,$\frac{f(x)}{x}$+lnx+1≥0對任意的x∈[$\frac{1}{2}$,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,已知a=7,b=5,c=3,則角A大小為(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個單位后關(guān)于原點對稱,則φ等于(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{{x}^{2}-2x+9}{x}$(x<0)最大值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}滿足:a1=$\frac{4}{3}$,且an+1=$\frac{4(n+1){a}_{n}}{3{a}_{n}+n}$,(n∈N+),則$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{2016}{{a}_{2016}}$=$2015\frac{2}{3}+\frac{1}{3•{4}^{2016}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l1:ax+4y-2=0直線l2:2x+y+2=0,且兩條直線互相垂直.
(1)直線l1與l2的交點坐標(biāo);
(2)已知圓C:x2+y2+6x+8y+21=0,判斷直線l1與圓C有無公共點,有幾個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=|x|+$\frac{a}{x^2}$(其中a∈R)的圖象不可能是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案