(本題滿分12分)已知函數(shù)
(1)若的單調(diào)區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于,求a的取值范圍。

(1)的遞減區(qū)間是,無遞增區(qū)間;(2).

解析試題分析:(1)函數(shù)的定義域為
恒成立,所以的遞減區(qū)間是,無遞增區(qū)間
(2)
因為存在極值,所以上有根即方程
上有根.
記方程的兩根為由韋達定理,所以方程的根必為兩不等正根。
 所以滿足方程判別式大于零
故所求取值范圍為
考點:本題主要考查應用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,(2)通過研究函數(shù)的極值情況,確定得到含a的方程,利用方程有解,求得取值范圍。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的單調(diào)增函數(shù),滿足;
(1)求
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)當0<a時,討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù)(其中,
(1)求函數(shù)的定義域;
(2)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)定義域為,且.
設點是函數(shù)圖像上的任意一點,過點分別作直線軸的垂線,垂足分別為

(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設為坐標原點,求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問a為何值時,函數(shù)的最小值是-4。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求證:
方程的根一個在內(nèi),一個在內(nèi),一個在內(nèi).(12分)

查看答案和解析>>

同步練習冊答案