7.函數(shù)f(x)=$\frac{ln|x|}{x}$的圖象大致為( 。
A.B.
C.D.

分析 判斷f(x)的奇偶性,及f(x)的函數(shù)值的符號(hào)即可得出答案.

解答 解:∵f(-x)=$\frac{ln|-x|}{-x}$=-$\frac{ln|x|}{x}$=-f(x),
∴f(x)是奇函數(shù),
故f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
當(dāng)x>0時(shí),f(x)=$\frac{lnx}{x}$,
∴當(dāng)0<x<1時(shí),f(x)<0,當(dāng)x>1時(shí),f(x)>0,
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)的圖象判斷,一般從奇偶性、單調(diào)性、零點(diǎn)和函數(shù)值等方面判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得( 。
A.$\frac{2}{3}$錢B.$\frac{5}{6}$錢C.1錢D.$\frac{7}{6}$錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四面體ABCD中,平面ABC⊥平面ACD,E,F(xiàn),G分別為AB,AD,AC的中點(diǎn),AC=BC,∠ACD=90°.
(1)求證:AB⊥平面EDC;
(2)若P為FG上任一點(diǎn),證明:EP∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b,c為正實(shí)數(shù),求證:$\frac{b^2}{a}+\frac{c^2}+\frac{a^2}{c}≥a+b+c$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=7,S4=24,數(shù)列{bn}的前n項(xiàng)和Tn=n2+an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平行四邊形ABCD中,AB=4,AD=2,∠A=$\frac{π}{3}$,M為DC的中點(diǎn),N為平面ABCD內(nèi)一點(diǎn),若|$\overrightarrow{AB}$-$\overrightarrow{NB}$|=|$\overrightarrow{AM}$-$\overrightarrow{AN}$|,則$\overrightarrow{AM}$•$\overrightarrow{AN}$=( 。
A.16B.12C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,為了測(cè)量A、B處島嶼的距離,小明在D處觀測(cè),A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A、B兩處島嶼的距離為20$\sqrt{6}$海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-x+1,則曲線y=f(x)在點(diǎn)(0,1)處的切線與兩坐標(biāo)軸所圍成的三角形的面積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案