3.設平面直角坐標系的原點為O,直線l的方程為$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}+t}\end{array}\right.$(t為參數(shù)),以O為極點,x軸正方向為極軸正方向建立極坐標系,兩坐標系的單位長度相等.動點M(ρ,θ)(ρ>0)且ρ=4cos(θ-$\frac{π}{3}$).
(1)求直角坐標系下點M的軌跡C;
(2)求直線l被C截得的線段的長.

分析 (1)利用極坐標與直角坐標的互化方法,求出動點M的直角坐標方程,即可得出直角坐標系下點M的軌跡C;
(2)直線方程化為普通方程,求出圓心到直線的距離,即可求直線l被C截得的線段的長.

解答 解:(1)ρ=4cos(θ-$\frac{π}{3}$),可化為ρ=2cosθ+2$\sqrt{3}$sinθ,
∴ρ2=2ρcosθ+2$\sqrt{3}$ρsinθ,
∴x2+y2=2x+2$\sqrt{3}$y,即(x-1)2+(y-$\sqrt{3}$)2=4,
表示以(1,$\sqrt{3}$)為圓心,2為半徑的圓;
(2)直線l的方程為$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}+t}\end{array}\right.$(t為參數(shù)),普通方程為x+y-2-$\sqrt{3}$=0,
圓心到直線的距離d=$\frac{1}{\sqrt{2}}$,
∴直線l被C截得的線段的長=2$\sqrt{4-\frac{1}{2}}$=$\sqrt{14}$.

點評 本題考查極坐標方程、參數(shù)方程與直角坐標方程的互化,考查圓心到直線的距離公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(理)試卷(解析版) 題型:選擇題

觀察下列散點圖,其中兩個變量的相關關系判斷正確的是( )

A. 為正相關, 為負相關, 為不相關

B. 為負相關, 為不相關, 為正相關

C. 為負相關, 為正相關, 為不相關

D. 為正相關, 為不相關, 為負相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O為坐標原點,動點M到定直線y=1的距離等于d,并且滿足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$為非負實數(shù)
(1)求動點M的軌跡C1的方程
(2)若將曲線C1向左平移一個單位得到曲線C2,試指出C2為何種類型的曲線;
(3)若0<k<1,F(xiàn)1、F2是(2)中曲線C2的兩個焦點,當點P在C2上運動時,求∠F1PF2取得最大值時對應點P的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直角坐標平面內(nèi)兩相異點A、B兩點滿足:
①點A、B都在函數(shù) f (x) 的圖象上;②點A、B關于原點對稱,
則點對 (A,B) 是函數(shù) f (x) 的一個“姊妹點對”.點對 (A,B) 與 (B,A) 可看作是同一個“姊妹點對”.已知函數(shù) f (x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{x+1}{e},x≥0}\end{array}\right.$,則 f (x) 的“姊妹點對”有( 。
A.0 個B.1 個C.2 個D.3 個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D-AEC的體積;
(3)設點M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.湛江成功申辦2014年廣東省第十四屆運動會.為做好承辦工作,決定選拔3名專業(yè)人士加入組委會.經(jīng)過初選確定4男2女為候選人,每位候選人當選的機會相等.記ξ為女專業(yè)人士當選人數(shù).
(1)求ξ=0的概率; 
(2)求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,點P是橢圓上任意一點,F(xiàn)1、F2分別是橢圓的左右焦點,△PF1F2的面積最大值為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)從圓x2+y2=16上一點P向橢圓C引兩條切線,切點分別為A,B,當直線AB分別與x軸、y軸交于M、N兩點時,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖幾何體由前向后方向的正投影面是平面EFGH,則該幾何體的主視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.定義在R上的函數(shù)g(x)及二次函數(shù)h(x)滿足:g(x)+2g(-x)=ex+$\frac{2}{e^x}$-9,h(-2)=h(0)=1,且h(-3)=-2.
(1)求g(x)和h(x)的解析式;
(2)對于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范圍;
(3)設f(x)=$\left\{\begin{array}{l}g(x),(x>0)\\ h(x),(x≤0)\end{array}$,在(2)的條件下,討論方程f[f(x)]=a+5的解的個數(shù)情況.

查看答案和解析>>

同步練習冊答案