2.已知奇函數(shù)f(x),在(0,+∞)上,f(x)=x2-3,則f(x)>0的解集為($\sqrt{3}$,+∞)∪(-$\sqrt{3}$,0).

分析 畫出函數(shù)f(x)的圖象,數(shù)形結(jié)合求得f(x)>0的解集.

解答 解:奇函數(shù)f(x),在(0,+∞)上,f(x)=x2-3,則f(x)的圖象如圖所示:
結(jié)合函數(shù)f(x)的圖象可得,f(x)>0的解集為($\sqrt{3}$,+∞)∪(-$\sqrt{3}$,0),
故答案為:($\sqrt{3}$,+∞)∪(-$\sqrt{3}$,0).

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.平面直角坐標(biāo)系xOy中,過橢圓M:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0)焦點(diǎn)的直線x+y-2$\sqrt{2}$=0交M于P,Q兩點(diǎn),G為PQ的中點(diǎn),且OG的斜率為9.
(Ⅰ)求M的方程;
(Ⅱ)A、B是M的左、右頂點(diǎn),C、D是M上的兩點(diǎn),若AC⊥BD,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow$=-1,則$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$的最大值是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在等差數(shù)列{an}中,a3,a15是方程x2-6x-10=0的根,則S17的值是(  )
A.41B.51C.61D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.將三角函數(shù)$y=sin({2x+\frac{π}{6}})$向左平移$\frac{π}{6}$個(gè)單位后,得到的函數(shù)解析式為( 。
A.$sin({2x-\frac{π}{6}})$B.$sin({2x+\frac{π}{3}})$C.sin2xD.cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.貝已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x-3,2),且$\overrightarrow{a}⊥\overrightarrow$.
(1)求x的值;
(2)試確定實(shí)數(shù)k的值,使k$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-2\overrightarrow$平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)$f(x)=\sqrt{{e^x}+2x-a}$,若曲線y=cosx上存在點(diǎn)(x0,y0)使得f(f(y0))=y0,則實(shí)數(shù)a的取值范圍是( 。
A.[1,e]B.[e-1-1,1]C.[1,e+1]D.[e-1-1,e+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=alnx+x2-(a+2)x恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-2,0)C.(-1,0)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案