8.下列結(jié)論:①(sin x)′=-cos x;②($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$;③(log3x)′=$\frac{1}{3lnx}$;④(ln x)′=$\frac{1}{x}$.其中正確的有(  )
A.0個B.1個C.2個D.3個

分析 利用導(dǎo)數(shù)的運算公式分別分析解答.

解答 解:(sin x)′=cos x,故①錯誤;
②($\frac{1}{x}$)′=-$\frac{1}{x2}$,故②錯誤; 
(log3x)′=$\frac{1}{xln3}$,故③錯誤;
(ln x)′=$\frac{1}{x}$,故④正確.
故選:B

點評 本題考查了導(dǎo)數(shù)的計算;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+bx({a,b∈R})$.
(1)若函數(shù)f(x)在(0,2)上存在兩個極值點,求3a+b的取值范圍;
(2)當(dāng)a=0,b≥-1時,求證:對任意的實數(shù)x∈[0,2],$|{f(x)}|≤2b+\frac{8}{3}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圓心坐標(biāo)是(-1,2),半徑長是$\sqrt{5}$的圓的方程為(x+1)2+(y-2)2=5.設(shè)直線y=2x與該圓相交于A,B兩點,則弦AB的長為$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)曲線y=xn+1(n∈Z*)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為xn,則x1•x2•x3…•xn的值為( 。
A.$\frac{1}{n}$B.$\frac{n}{n+1}$C.$\frac{1}{n+1}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,正方形ABCD內(nèi)接于圓O:x2+y2=2,M,N分別為邊AB,BC的中點,已知點P(2,0),當(dāng)正方形ABCD繞圓心O旋轉(zhuǎn)時,$\overrightarrow{PM}•\overrightarrow{ON}$的取值范圍是( 。
A.[-1,1]B.$[{-\sqrt{2},\sqrt{2}}]$C.[-2,2]D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等比數(shù)列{an}中,Sn為其前n項和,已知a5=2S4+3,a6=2S5+3,則此數(shù)列的公比q=3,a4,a6的等比中項為243,數(shù)列$\{\frac{6n+1}{a_n}\}$的最大值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=2px(p>0)的焦點為F,過拋物線上點P(2,y0)的切線為l,過點P作平行于x軸的直線m,過F作平行于l的直線交m于M,若|PM|=5,則p的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校為了解高一學(xué)生周末的“閱讀時間”,從高一年級中隨機(jī)調(diào)查了100名學(xué)生進(jìn)行調(diào)查,獲得了每人的周末“閱讀時間”(單位:小時),按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成樣本的頻率分布直方圖如圖所示.
(Ⅰ)求圖中a的值;
(Ⅱ)估計該校高一學(xué)生周末“閱讀時間”的中位數(shù);
(Ⅲ)在[1,1.5),[1.5,2)這兩組中采用分層抽樣抽取7人,再從7人中隨機(jī)抽取2人,求抽取的兩人恰好都在一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點為A、中心為O,若橢圓M過點$P(-\frac{1}{2},\frac{1}{2})$,且AP⊥PO.
(1)求橢圓M的方程;
(2)若△APQ的頂點Q也在橢圓M上,試求△APQ面積的最大值;
(3)過點A作兩條斜率分別為k1,k2的直線交橢圓M于D,E兩點,且k1k2=1,求證:直線DE恒過一個定點.

查看答案和解析>>

同步練習(xí)冊答案