2.已知a,b,c,d∈R且滿足$\frac{a+3lna}$=$\frac{d-3}{2c}$=1,則(a-c)2+(b-d)2的最小值為$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$.

分析 根據(jù)題意可將(a,b),(c,d)分別看成函數(shù)=x+3lnx與y=2x+3上任意一點(diǎn),然后利用兩點(diǎn)的距離公式,結(jié)合幾何意義進(jìn)行求解.

解答 解:因?yàn)?\frac{a+3lna}$=$\frac{d-3}{2c}$=1,所以可將P:(a,b),Q:(c,d)分別看成函數(shù)y=x+3lnx與y=2x+3上任意一點(diǎn),
問(wèn)題轉(zhuǎn)化為曲線上的動(dòng)點(diǎn)P與直線上的動(dòng)點(diǎn)Q之間的最小值的平方問(wèn)題,
設(shè)M(t,t+3lnt)是曲線y=x+3lnx的切點(diǎn),因?yàn)閥′=1+$\frac{3}{x}$,
故點(diǎn)M處的切斜的斜率k=1+$\frac{3}{t}$,
由題意可得1+$\frac{3}{t}$=2,解得t=3,
也即當(dāng)切線與已知直線y=2x+3平行時(shí),此時(shí)切點(diǎn)M(3,3+3ln3)到已知直線y=2x+3的距離最近,
最近距離d=$\frac{|6-3-3ln3+3|}{\sqrt{5}}$=$\frac{6-3ln3}{\sqrt{5}}$,
也即(a-c)2+(b-d)2=$\frac{9(2-ln3)^{2}}{5}$=$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$,
故答案為:$\frac{9}{5}$ln2$\frac{{e}^{2}}{3}$

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究切線,解題的關(guān)鍵是利用幾何意義進(jìn)行求解,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某中學(xué)高一、高二年級(jí)各有8個(gè)班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:

為鼓勵(lì)學(xué)生閱讀,在高一、高二兩個(gè)兩個(gè)年級(jí)中,學(xué)校將閱讀量高于本年級(jí)閱讀量平均數(shù)的班級(jí)命名為該年級(jí)的“書香班級(jí)”.
(1)當(dāng)a=4時(shí),記高一年級(jí)“書香班級(jí)”數(shù)為m,高二年級(jí)的“書香班級(jí)”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級(jí)8個(gè)班級(jí)中,任意選取兩個(gè),求這兩個(gè)班級(jí)均是“書香班級(jí)”的概率;
(3)若高二年級(jí)的“書香班級(jí)”數(shù)多于高一年級(jí)的“書香班級(jí)”數(shù),求a的值(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知曲線C的方程為$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,則曲線C的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)過(guò)點(diǎn)$(\sqrt{2},2\sqrt{2})$,過(guò)點(diǎn)(0,-2)的直線l與雙曲線C的一條漸進(jìn)線平行,且這兩條平行線間的距離為$\frac{2}{3}$,則雙曲線C的實(shí)軸長(zhǎng)為(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(a∈R)與函數(shù)$F(x)=x+\frac{2}{x}$有公共切線.
(Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2-a對(duì)于x>0的一切值恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z滿足(3-i)z=2+i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}i$C.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知F1,F(xiàn)2是橢圓C1與雙曲線C2的公共焦點(diǎn),點(diǎn)P是C1與C2的公共點(diǎn),若橢圓C1的離心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,則雙曲線C2的離心率e2的值為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線C1
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為$(\sqrt{3},0)$,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案